
DDVTECH MEDIA SERVER PERFORMANCE MEASUREMENT

INITIATIVE

JARON VIËTOR, CTO, MISTSERVER / DDVTECH B.V.

Abstract. These performance tests were performed in response to client re-

quests as well as our personal interest in how MistServer performs compared

to other widely-used media servers. We have collected sensible performance
metrics in a reliable way, repeatable under clearly defined conditions, thus

allowing users to compare relative media server performance.

Our initial tests compare performance among three media servers: Mist-
Server 2.0, Wowza Streaming Engine 4.0.0, and Nginx+RTMP module. Nginx

is one of the top-performing web servers with streaming capabilities, while

Wowza is one of the leading dedicated media servers.
We compare the test results with our theoretical expectations and while

these are mostly in line with each other, some of the results are quite unex-

pected, warranting further research.

1. Research question

When setting up a media system generally one of two approaches is taken — each
on opposite sides of the spectrum. Either dedicated media server software is used
which is capable of doing advanced processing and control, or a relatively simple
web server is used that serves out pre-prepared data without further processing. As
you would expect from these setups, the web server approach is more usual where
throughput and performance are key while the dedicated approach is more usual
in systems that focus on features or specific client needs.

In theory dedicated media servers generally have more features but lesser perfor-
mance than web-server-based solutions. MistServer, being somewhere in the middle
of the two extremes, is expected to perform accordingly.

The question is: how does this theory hold in practice?
Additional to the main theory, we expect some specifics in terms of performance

behaviour. Web servers are optimized for many small files, have a very mature
caching ecosystem and have been in development for a very long time. Media servers
are relatively new, optimized for larger files and have no real caching mechanism
of their own, instead relying on existing HTTP caching implementations.

Segmented media delivery methods are HTTP based by design, so those will most
likely be optimal on web-server-based systems. On the other hand, dedicated media
servers are more suitable for true streaming delivery methods such as RTSP and
RTMP. We expect dedicated systems to use more CPU power and memory, because
of the additional processing overhead they must incur. Web servers are optimized
for dealing with high load and many incoming connections, so most likely those will
excel at higher loads.

To fairly assess performance we wanted to look at several areas at the same
time. We specifically looks at viewer count, viewer experience, memory/CPU use,

Date: 2014/04/07 - revision 2.

1



DDVTech media server performance measurement initiative

and bandwidth use. Together we believe these give a clear picture of most im-
portant factors of media delivery systems, all the way from viewer experience to
infrastructure costs.

2. Methodology

We created a simple tool that runs as a low-footprint system daemon, collecting
generic system performance metrics. These metrics are for the whole system — not
just the media server. We opted for this method because there is no reliable way
to collect these metrics for a single server.

The daemon attempts to poll the system usage once per second, but if the system
is really busy the daemon may not be able to poll at this interval and the interval
may become larger. Each interval, the following metrics are collected:

• Time since measurement start, in whole integer seconds (so larger intervals
can be detected and accounted for)

• A one-minute rolling system load average
• Total memory use in bytes, excluding operating system buffers and caches
• The percentage of time since the last interval that the CPU spend in non-

idle states
• Total number of bytes uploaded through all network interfaces since mea-

surement start
• Total number of bytes downloaded through all network interfaces since

measurement start

Additionally, a client process is defined, for the to-be-measured protocol and
stream. This client process is intended to be run from one or multiple separate
hardware machines that should have enough bandwidth and processing power avail-
able to retrieve the stream as many times as will be tested, simultaneously. The
client process simulates a real client connecting to the specified stream over the
specified protocol. It analyses the data coming through and performs corruption
detection checks. If the data stream at any point becomes corrupted, the client
process disconnects and exits without logging anything. Once the stream ends or
the client process is killed, it logs the timestamp of the last media packet received.
This means the amount of received media data is logged (clean state), or nothing
is logged at all (error state).

Each test follows the following steps, in order:

(1) Enable auto-boot for the to-be-measured media server software
(2) Reboot the to-be-measured hardware
(3) Remotely enable the metric collection daemon
(4) Wait 2 seconds
(5) Start X batches of Y client processes on one or more systems that are not

measured, waiting one second between batches
(6) Wait for Z seconds
(7) Kill all client processes
(8) Wait 10 seconds
(9) Remotely stop the metric collection daemon and collect the stored mea-

surements.

3. Test hardware

We ran our initial tests on a single hardware configuration. It’s specifications
are:

• AMD FX(tm)-8120 Eight-Core Processor
• 2X8GB RAM: Kingston KHX1600C10D3/8GX

2



DDVTech media server performance measurement initiative

• ASRock N68-VS3 FX motherboard
• Eminent EM4028 gigabit ethernet PCI-E adapter
• Western Digital Blue WD5000LPVX, 500GB HDD

The installed operating system is Arch Linux, updated to February 1st, 2014. All
optional system services and daemons have been disabled, except for ntpd and
sshd to make sure system time stays in sync and the system can be remotely
administered.

4. The completed measurements

Following the above methodololy, we set up a 0.6Mbit RTMP stream, encoded
from the Blender project’s Big Buck Bunny movie. For reference, the exact sample
clip used can be downloaded at the following URL: http://dtsc.mistserver.

com/example1_low.mp4 On the three configurations described in the introduction,
the following tests were run:

• Run 000: 2 batches of 50 clients, for 60 seconds
• Run 001: 2 batches of 50 clients, for 300 seconds
• Run 002: 2 batches of 50 clients, for 600 seconds
• Run 003: 4 batches of 50 clients, for 60 seconds
• Run 004: 4 batches of 50 clients, for 300 seconds
• Run 005: 4 batches of 50 clients, for 600 seconds
• Run 006: 8 batches of 50 clients, for 60 seconds
• Run 007: 8 batches of 50 clients, for 300 seconds
• Run 008: 8 batches of 50 clients, for 600 seconds
• Run 009: 16 batches of 50 clients, for 60 seconds
• Run 010: 16 batches of 50 clients, for 300 seconds
• Run 011: 16 batches of 50 clients, for 600 seconds
• Run 012: 24 batches of 50 clients, for 60 seconds
• Run 013: 24 batches of 50 clients, for 300 seconds
• Run 014: 24 batches of 50 clients, for 600 seconds

The raw collected data can be retrieved at this URL: http://releases.ddvtech.
com/raw_data_201403.zip

This archive contains a folder for each media server software, containing all the
test runs in the format “run000 100 rtmp 60.csv”. The first part is the number of
the run, 000 through 014 as listed above. The second part is the total number of
clients. The third part is the protocol tested and the last part is the test duration
in seconds. Another file with the extension .times is available, containing the mea-
surements taken by the client side and listing how many milliseconds of media data
was received. Finally, a third file ends in a dash followed by another number. This
number is equal to the contents of the file and lists the count of times that are at
least 90% of the test duration. Only these are considered to be successful client
connections.

5. Results

We created graphs out of the raw data collected above, to simplify analysing
this huge amount of data. Let’s go over these and note the more interesting points,
starting with the graphs for 100 viewers at one minute test duration.

3

http://dtsc.mistserver.com/example1_low.mp4
http://dtsc.mistserver.com/example1_low.mp4
http://releases.ddvtech.com/raw_data_201403.zip
http://releases.ddvtech.com/raw_data_201403.zip


DDVTech media server performance measurement initiative

0%

10%

25%

50%

75%

100%

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20

C
P
U

 u
se

CPU usage, 1m, 0.6Mbit stream, 100 rtmp clients

Wowza Nginx MistServer

This is the CPU usage for a one minute test of 100 viewers, for all three tested
applications. Less is better. Nginx is clearly the more stable of the three, showing
no spikes of any kind. This is to be expected, as Nginx is the most generic and
optimized but least sophisticated of the three. Both MistServer and Wowza show
spiking at similar moments, but MistServer has a much lower average CPU usage
than the others.

On the whole nothing is very surprising about this graph. Nginx shows the best
startup behaviour, smoothly accepting all 100 clients without showing much effort
at all. Wowza is most bothered at the beginning, spiking over 80% CPU usage for
just 100 clients already.

0 MiB

200 MiB

400 MiB

600 MiB

800 MiB

1000 MiB

1200 MiB

1400 MiB

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20

M
e
m

o
ry

 u
se

Memory usage, 1m, 0.6Mbit stream, 100 rtmp clients

Wowza Nginx MistServer

Memory usage. Again, less is better. Here we also do not see anything unex-
pected. Note how MistServer’s memory usage rises and drops when clients connect
and disconnect, while Nginx’ usage rises, but doesn’t drop again. This could be con-
sidered both an advantage and a disadvantage, depending on who you ask. Keeping
the memory in use means the startup time of more incoming clients afterwards will

4



DDVTech media server performance measurement initiative

be shorter, while freeing the memory means it can be used for other tasks running
on the system, or will not be billed in cases where memory use is rented.

Wowza clearly uses much more memory than even the others combined — most
likely due to the fact that they use Java, which is known for its poor memory
management capabilities. This also explains the sudden rise around 15 seconds.

0 Mbps

100 Mbps

200 Mbps

300 Mbps

400 Mbps

500 Mbps

600 Mbps

700 Mbps

800 Mbps

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20

U
p
lo

a
d
 s

p
e
e
d

Network speed, 1m, 0.6Mbit stream, 100 rtmp clients

Wowza Nginx MistServer

0 Gbit

5 Gbit

10 Gbit

15 Gbit

20 Gbit

25 Gbit

30 Gbit

35 Gbit

40 Gbit

45 Gbit

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20

T
o
ta

l 
u
p
lo

a
d
e
d
 d

a
ta

Network upload, 1m, 0.6Mbit stream, 100 rtmp clients

Wowza Nginx MistServer

Finally, these last graphs represent the uploaded data. Here too, less is better.
We also recorded downloaded data, but since uploaded data accounts for almost
all of the data usage in all cases, we only graphed the uploaded data here. The left
graph shows the average data rate per second, while the right shows the total of
data uploaded over time.

Both Nginx and Wowza fully saturate the gigabit network card (1024Mbps is a
gigabit, but this is not a practically reachable speed because of TCP overhead and
other factors), sending all 100 viewers the stream as fast as they possibly can.

MistServer instead sends out the stream in real-time, generating much less net-
work traffic. Nginx completely drops out just before the minute is over — this is
because at that point Nginx has finished sending the complete 10 minute video file.
Wowza however has not finished yet at that point and keeps sending data until the
clients are forced to disconnect after a minute. Naturally, MistServer’s clients have
only received one minute of the stream after a minute, and they also keep receiving
data until they are forced to disconnect at the end of this test run.

In the end, MistServer uses just under 5 gigabits of bandwidth to send a minute of
this stream to 100 viewers, while Nginx and Wowza use around 40 gigabits instead.
Quite a large difference, entirely explained by the fact that Nginx and Wowza sent
the data as quickly as possible while MistServer sends it at real-time speed.

5



DDVTech media server performance measurement initiative

So — what happens when we increase the duration of this test?
Here are the same graphs, for a 5 minute test run. Remember, for all of these

less is better.

0%

10%

25%

50%

75%

100%

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30

C
P
U

 u
se

CPU usage, 5m, 0.6Mbit stream, 100 rtmp clients

Wowza Nginx MistServer

0 MiB

200 MiB

400 MiB

600 MiB

800 MiB

1000 MiB

1200 MiB

1400 MiB

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30

M
e
m

o
ry

 u
se

Memory usage, 5m, 0.6Mbit stream, 100 rtmp clients

Wowza Nginx MistServer

0 Mbps

100 Mbps

200 Mbps

300 Mbps

400 Mbps

500 Mbps

600 Mbps

700 Mbps

800 Mbps

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30

U
p
lo

a
d
 s

p
e
e
d

Network speed, 5m, 0.6Mbit stream, 100 rtmp clients

Wowza Nginx MistServer

0 Gbit

20 Gbit

40 Gbit

60 Gbit

80 Gbit

100 Gbit

120 Gbit

140 Gbit

160 Gbit

180 Gbit

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30

T
o
ta

l 
u
p
lo

a
d
e
d
 d

a
ta

Network upload, 5m, 0.6Mbit stream, 100 rtmp clients

Wowza Nginx MistServer

In many ways, these are simply longer versions of the one minute graphs. Worthy
of note are the sudden CPU usage spike Wowza shows around 4 minutes into the
test, as well as the sudden increase in memory usage as it finally finishes sending
the entire 10 minutes to all connected clients.

Really odd here is the bandwidth usage. This is a stream that averages around
0.6 Mbps over the whole length of the video. (51 MiB = 408 mbit. Divided by
596 seconds equals 0.68 Mbps, some of which is container overhead.) That would
mean it should take roughly 40 gigabits to send 100 clients the entire stream.
Nginx clearly shows a near exact match with this theory. MistServer does as well,
since halfway into the video it’s at 20 gigabits: exactly half of what Nginx used
to send the entire stream. However, Wowza uses over 160 gigabits to send 40
gigabits of data. That’s approximately 75% overhead! We didn’t believe this at
first, and double-checked that we were indeed sending out the same stream through
Wowza, and confirmed that indeed it was the exact same file. An in-depth check
of the streamed data showed us that Wowza sends out several redundant packets,
increasing the stream overhead.

6



DDVTech media server performance measurement initiative

Let’s move on to the 10 minute run:

0%

10%

25%

50%

75%

100%

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

C
P
U

 u
se

CPU usage, 10m, 0.6Mbit stream, 100 rtmp clients

Wowza Nginx MistServer

0 MiB

200 MiB

400 MiB

600 MiB

800 MiB

1000 MiB

1200 MiB

1400 MiB

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00
M

e
m

o
ry

 u
se

Memory usage, 10m, 0.6Mbit stream, 100 rtmp clients

Wowza Nginx MistServer

0 Mbps

100 Mbps

200 Mbps

300 Mbps

400 Mbps

500 Mbps

600 Mbps

700 Mbps

800 Mbps

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

U
p
lo

a
d
 s

p
e
e
d

Network speed, 10m, 0.6Mbit stream, 100 rtmp clients

Wowza Nginx MistServer

0 Gbit

20 Gbit

40 Gbit

60 Gbit

80 Gbit

100 Gbit

120 Gbit

140 Gbit

160 Gbit

180 Gbit

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

T
o
ta

l 
u
p
lo

a
d
e
d
 d

a
ta

Network upload, 10m, 0.6Mbit stream, 100 rtmp clients

Wowza Nginx MistServer

These ten minute graphs really tell the same story as the one and five minute
graphs did, but all the way to the end. The scaling causes some of the effects that
were already visible in the shorter graphs to be much more pronounced: you can
clearly see MistServer’s CPU usage being far under Nginx’ usage, for example. You
can see MistServer’s total upload matching Nginx’ right at the ten minute mark,
as expected. The memory used by Nginx and Wowza is still not freed, even after
several minutes of serving zero clients.

Something that wasn’t shown in any graph, but is worth noting anyway: in all
of the above cases, all media servers delivered 90% or more of the testing time in
media data to all 100 clients. In other words, they all pass our measure for stream
quality completely. For simplicity and to account for measuring error, we’ll call a
run “perfect” if no more than 5 clients fail to receive 90% or more of the testing
time.

7



DDVTech media server performance measurement initiative

Let’s see what happens when we double the number of clients to 200. The effects
between one, five and ten minutes are mostly the same, so to save space here are
only the graphs for 10 minutes:

0%

10%

25%

50%

75%

100%

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

C
P
U

 u
se

CPU usage, 10m, 0.6Mbit stream, 200 rtmp clients

Wowza Nginx MistServer

0 MiB

200 MiB

400 MiB

600 MiB

800 MiB

1000 MiB

1200 MiB

1400 MiB

1600 MiB

1800 MiB

2000 MiB

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

M
e
m

o
ry

 u
se

Memory usage, 10m, 0.6Mbit stream, 200 rtmp clients

Wowza Nginx MistServer

0 Mbps

100 Mbps

200 Mbps

300 Mbps

400 Mbps

500 Mbps

600 Mbps

700 Mbps

800 Mbps

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

U
p
lo

a
d
 s

p
e
e
d

Network speed, 10m, 0.6Mbit stream, 200 rtmp clients

Wowza Nginx MistServer

0 Gbit

50 Gbit

100 Gbit

150 Gbit

200 Gbit

250 Gbit

300 Gbit

350 Gbit

400 Gbit

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

T
o
ta

l 
u
p
lo

a
d
e
d
 d

a
ta

Network upload, 10m, 0.6Mbit stream, 200 rtmp clients

Wowza Nginx MistServer

First of all, let’s note that again all runs for all servers got a perfect count for
our stream quality measure: all 200 clients served successfully.

Most things here are simply doubled. Wowza and Nginx both still saturate
the entire available bandwidth (as expected), but they both take twice as long
to completely send the 200 clients the entire stream (again, no surprise there).
MistServer’s upload speed has doubled, compared to 100 clients. The total amounts
of bandwidth used at the end are exactly doubled for all three. In terms of memory
usage, both MistServer and Nginx roughly doubled their use, while Wowza only
added about 400 megabytes to its previous 1400 megabytes. It still uses more
memory even when idle than either MistServer or Nginx use while they are serving
200 clients, though.

It’s a little hard to tell because the numbers are so small, but MistServer’s CPU
usage has roughly doubled compared to the 100 clients run. Nginx and Wowza’s
CPU usage have stayed nearly the same. They both take twice as long as before,
causing the total usage over time to have approximately doubled for all three.

8



DDVTech media server performance measurement initiative

Let’s double the number of clients number again, to 400, and see what happens:

0%

10%

25%

50%

75%

100%

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

C
P
U

 u
se

CPU usage, 10m, 0.6Mbit stream, 400 rtmp clients

Wowza Nginx MistServer

0 MiB

500 MiB

1000 MiB

1500 MiB

2000 MiB

2500 MiB

3000 MiB

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00
M

e
m

o
ry

 u
se

Memory usage, 10m, 0.6Mbit stream, 400 rtmp clients

Wowza Nginx MistServer

0 Mbps

100 Mbps

200 Mbps

300 Mbps

400 Mbps

500 Mbps

600 Mbps

700 Mbps

800 Mbps

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

U
p
lo

a
d
 s

p
e
e
d

Network speed, 10m, 0.6Mbit stream, 400 rtmp clients

Wowza Nginx MistServer

0 Gbit

50 Gbit

100 Gbit

150 Gbit

200 Gbit

250 Gbit

300 Gbit

350 Gbit

400 Gbit

450 Gbit

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

T
o
ta

l 
u
p
lo

a
d
e
d
 d

a
ta

Network upload, 10m, 0.6Mbit stream, 400 rtmp clients

Wowza Nginx MistServer

The quality measure counts are no longer perfect at 400 clients, already. Nginx
and MistServer got a perfect in all cases, but Wowza only managed 166, 0 and 0
successful connections out of 400 for the 1, 5 and 10 minute runs, respectively.

Other than that, exactly what you’d expect by looking at the 100 and 200 client
runs has happened: bandwidth usage again doubled for all three in the exact same
way. Both Nginx and MistServer doubled their CPU and memory usage in the same
way again, but Wowza shows slightly less than double CPU use (most likely due
to failing to serve all 400 clients). Wowza’s memory usage did double in the same
way, again, adding approximately another 800 megabytes on top of the previous
1800.

9



DDVTech media server performance measurement initiative

Let’s double that client count again, to 800:

0%

10%

25%

50%

75%

100%

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

C
P
U

 u
se

CPU usage, 10m, 0.6Mbit stream, 800 rtmp clients

Wowza Nginx MistServer

0 MiB

1000 MiB

2000 MiB

3000 MiB

4000 MiB

5000 MiB

6000 MiB

7000 MiB

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00
M

e
m

o
ry

 u
se

Memory usage, 10m, 0.6Mbit stream, 800 rtmp clients

Wowza Nginx MistServer

0 Mbps

100 Mbps

200 Mbps

300 Mbps

400 Mbps

500 Mbps

600 Mbps

700 Mbps

800 Mbps

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

U
p
lo

a
d
 s

p
e
e
d

Network speed, 10m, 0.6Mbit stream, 800 rtmp clients

Wowza Nginx MistServer

0 Gbit

50 Gbit

100 Gbit

150 Gbit

200 Gbit

250 Gbit

300 Gbit

350 Gbit

400 Gbit

450 Gbit

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

T
o
ta

l 
u
p
lo

a
d
e
d
 d

a
ta

Network upload, 10m, 0.6Mbit stream, 800 rtmp clients

Wowza Nginx MistServer

Nginx and MistServer still both get a perfect quality measure count here. Wowza
got a 167 on the one minute run (almost exactly the same as at 400 clients), and
again a zero on the other runs.

Roughly the same things happened again, with some exceptions: Wowza now
spikes repeatedly to 100% CPU usage, and more than doubled its memory use
to a whopping 6000 megabytes total. Additionally, MistServer now saturates the
network card momentarily where the test video has the highest bitrates. This seems
to be “sweet spot” where Nginx and MistServer are at near-equal performance on
almost all measured fields.

10



DDVTech media server performance measurement initiative

We would double the number of clients again to 1600, but since this is an 0.6 Mbit
stream and the network card is saturated at roughly 700Mbps, we theoretically can
only serve about 1165 clients reliably. Let’s attempt to push past that maximum
just a little bit and see what happens at 1200 clients:

0%

10%

25%

50%

75%

100%

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

C
P
U

 u
se

CPU usage, 10m, 0.6Mbit stream, 1200 rtmp clients

Wowza Nginx MistServer

0 MiB

2000 MiB

4000 MiB

6000 MiB

8000 MiB

10000 MiB

12000 MiB

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

M
e
m

o
ry

 u
se

Memory usage, 10m, 0.6Mbit stream, 1200 rtmp clients

Wowza Nginx MistServer

0 Mbps

100 Mbps

200 Mbps

300 Mbps

400 Mbps

500 Mbps

600 Mbps

700 Mbps

800 Mbps

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

U
p
lo

a
d
 s

p
e
e
d

Network speed, 10m, 0.6Mbit stream, 1200 rtmp clients

Wowza Nginx MistServer

0 Gbit

50 Gbit

100 Gbit

150 Gbit

200 Gbit

250 Gbit

300 Gbit

350 Gbit

400 Gbit

450 Gbit

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

T
o
ta

l 
u
p
lo

a
d
e
d
 d

a
ta

Network upload, 10m, 0.6Mbit stream, 1200 rtmp clients

Wowza Nginx MistServer

Let’s talk quality measure counts again. We’re not expecting perfect counts
anywhere here, since this run is theoretically impossible. As a reminder, we consider
receiving at least 90% of the test duration in media a successful connection, and no
more than 5 connections may be unsuccessful for a run to be considered perfect.
Nginx got 1079, 858 and 809 out of 1200. MistServer got 1182, 728 and 818. Wowza
got 343, 0 and 0.

All the previously established patterns in terms of CPU and memory usage are
still visible here. Bandwidth is now fully saturated by all servers for the full ten
minutes, exactly as expected.

This makes the quality measure counts the main point of discussion. Since most
high-bitrate moments appear later into the video, MistServer has an advantage in
the first minute and gets a near-perfect 1182, compared to Nginx’ 1079. At five
minutes, MistServer can’t keep up anymore as the bitrate needed to sent the stream
in real-time pushes past the limit of the network card, and it drops to 728 while
Nginx almost maintains its count at 858. Of course both applications run into
limits here, but Nginx got some of the viewers a head start while it was still able to
and MistServer did not, causing MistServer’s count to drop more quickly. The ten

11



DDVTech media server performance measurement initiative

minute counts turn back into MistServer’s favor as bitrates drop again, allowing
MistServer to “catch up” to 818 and Nginx drops further to 809.

The above data is also summerized in some easily readable tables, below.

Table 1. Successful client counts

Clients 400 800 1200
Time 1m 5m 10m 1m 5m 10m 1m 5m 10m
Wowza 166 0 0 167 0 0 343 0 0
MistServer 400 400 398 795 798 798 1182 728 818
Nginx 400 400 400 800 800 800 1079 858 809

Table 2. Total bandwidth used per client in KiB

Time 1m 5m 10m
Wowza 51943 221935 221935
MistServer 5287 26490 51583
Nginx 51518 51549 51549

Table 3. Memory usage per client in MiB

Client count Wowza MistServer Nginx
100 5.49 1.34 0.95
200 5.91 1.30 0.80
400 5.23 1.27 0.77
800 6.56 1.27 0.79
1200 7.52 1.34 0.75
Average 6.14 1.31 0.81

Table 4. CPU usage per client in percentage

Client count Wowza MistServer Nginx
100 0.170 0.009 0.011
200 0.219 0.017 0.010
400 0.106 0.017 0.010
800 0.067 0.017 0.010
1200 0.042 0.015 0.010

6. Analysis

What do all these results mean with regards to our theories and research ques-
tion?

The theory that dedicated media servers, which are more feature-rich than
web servers, exhibit lower throughput performance than web-server-based solutions
seems to hold up pretty well. The theory that the tested protocol (RTMP) would
perform worse on a web-server-based system doesn’t seem to hold at all.

MistServer is doing better than we expected it to — its performance is very
similar to Nginx’ (even exceeding it in some of the test cases), with a scaling curve
that is dissimilar to any of the other products. Both MistServer and Nginx seem
to scale almost linearly in memory, while Wowza uses a very unpredictable amount
of memory. Both MistServer and Wowza scale almost linearly in CPU time while
Nginx has a very steady CPU usage. Both Nginx and Wowza scale equally with

12



DDVTech media server performance measurement initiative

regards to bandwidth used, trying to send data as fast as possible while MistServer
only sends what is needed to have a working stream.

Nginx was the best performer of the tested products in most of the conditions,
only being beaten by MistServer in some of them. This is most likely due to the
lack of extra features in Nginx, allowing it’s implementation to stay minimal and
efficient compared to the others.

Our predictions about CPU and memory usage do hold true - specifically that
dedicated media servers use more CPU and memory than web-server-based systems.
The exception, in some cases, is MistServer, which uses less CPU than Nginx to
complete the delivery especially for the lower viewer counts and durations. For
memory the prediction was always correct, though MistServer’s memory usage was
only slightly higher than Nginx’ while Wowza’s usage was much higher.

The theory that Nginx would excel at higher loads is partially true: it is able
to accept many incoming connections more smoothly than the others. However,
during the 1200-client overload testcase, MistServer was able to consistently serve
a larger number of viewers for two out of three scenarios (the one- and ten-minute
tests), while Nginx won out in the five-minute test scenario. This is most likely a
side-effect of the streaming behaviour of Nginx, where it tries to send as much data
as possible as fast as possible. When the connection is being oversaturated like this,
Nginx tends to serve some of the clients more quickly than others. This causes a
bandwidth shortage for the remaining clients, making them unable to receive the
stream at real time speed or higher.

The bandwidth usage measurements were a bit of an afterthought: we weren’t
expecting to see anything strange there. However, we were quite surprised at the
diversity of behaviour here. MistServer was the only server not trying to maximize
use of the data connection, and the amount of overhead incurred when using Wowza
is odd to say the least.

7. Conclusion

Summerizing the above analysis, most of the test results are nicely in line with
our theories. It clearly shows that not all media servers are created equal, even
when attempting to deliver the same content over the same delivery method. Com-
pared to what we expected, Nginx is much more adept at handling true streaming
protocols and MistServer performs better in overload conditions.

Naturally we are simplifying many factors here — possibly viewer experience is
the most simplified. Additionally, we were not expecting such varying results in
bandwidth use and we would have preferred to not be limited to just three server
software products.

We believe these results warrant further research, perhaps additional metrics
would reveal further differentiating factors as well. We’re encouraging anyone with
the means to do so to repeat these measurements and share them.

13


	1. Research question
	2. Methodology
	3. Test hardware
	4. The completed measurements
	5. Results
	6. Analysis
	7. Conclusion

