MistServer V2.11 Manual
DDVTech

May 17, 2017

MistServer V2.11 Manual

MistServer V2.11 Manual
May 17, 2017

Phone: +1 408 677 5212
Phone: +31 10 8080 619
E-mail: info@Qddvtech.com

Contents
1 Installing MistServer 5
1.1 List of files and their purpose e 5
1.2 Running without installation o 6
1.3 Automaticinstallation e 6
1.4 Manualinstallation e 6
1.5 Firsttime set-up i i i i e e e e e e e 7
2 Web configuration interface 7
2.1 The“Overview” panel i 7
2.1.1 Pro-only feature: Versioncheck 7
2.2 The “Protocols” panel e e e 7
2.3 The “Streams” panel 8
2.3.0.1 The “preview”button 8
2.3.0.2 The “embed”button 8
2.3.0.3 Pro-only feature: Wildcard streams 9
2.4 Pro-only feature: The “Push”panel eenen... 9
2.5 Pro-only feature: The “triggers”panel 9
2.6 The“logs” panel e e e e e 9
2.7 The “statistics” panel e 10
2.8 The “serverstats” panel 10
3 Stream settings 10
3.1 Streamname L. e e e e 10
3.2 SIreamsSOUICE v v vt ittt e e e e e e e e e e 11
3.2.1 Pushinputforlivestreams. i i 11
3.2.1.1 Pro-only feature: Wildcard pushinput 12
3.2.2 DTSCPUlliput . . . o oo vt ot et e e e e e 12
3.2.3 Pro-only feature: HLS pull input i it 12
3.2.4 Pro-only feature: TSUDPinput. v v v i v v v v i 12
3.24.1 Multicast L 13
3.2.5 Fileinput e e e e e 13
3.2.5.1 Pro-only feature: Folder support 13
4 Integration 14
4.1 APL . . e 14
4.1.1 Authentication i i i e 15
4.1.2 Capabilities 16
4.1.3 Streams e e e e e e 17
4.1.4 AddStream e e 18
4.1.5 DeleteStream i i e e e 18
4.1.6 Config o e e e 19
4.1.7 AddProtocol e e 20
4.1.8 DeleteProtocol e e 20
4.1.9 UpdateProtocol e 21
4110 Log . o o o e e e 21
4.1.11 Pro-only feature: ClearStatLogs« v v i i v v i i i e e e 21
4.1 12 BIOWSE . . o o oo e e e e e e e e e e e e e e 22
4.1.13 .8aVe . . oL e e e e e e e 22
4.1.14 ULSettings o i i i it e e e e e e e e e e e 22
4115 ClHeNtS . . . o o v o e e e e e e e e 23

May 17, 2017 Page 2 of 42

MistServer V2.11 Manual
May 17, 2017

Phone: +1 408 677 5212
Phone: +31 10 8080 619
E-mail: info@Qddvtech.com

4.1.16 Totals e e e 24
4.1.17 ACtiVe_Streams o v vt e e e e e e e e 25
4.1.18 Stats_Streamso 25
4.1.19 Pro-only feature: Update uuuinn.. 26
4.1.20 Pro-only feature: CheckUpdate (deprecated) 26
4.1.21 Pro-only feature: AutoUpdate i 26
4.1.22 Pro-only feature: Invalidate_Sessions 27
4.1.23 Pro-only feature: Stop_Sessions v i i i i e e 27
4.1.24 Pro-only feature: Stop SessIDo 27
4.1.25 Pro-only feature: Stop Tag i ittt 28
4.1.26 Pro-only feature: Tag SessID i 28
4.1.27 Pro-only feature: Push Start 28
4.1.28 Pro-only feature: Push_List i i i i ittt 29
4.1.29 Pro-only feature: Push Stop 30
4.1.30 Pro-only feature: Push Auto Add, 30
4.1.31 Pro-only feature: Push Auto Remove 30
4.1.32 Pro-only feature: Push Auto List 31
4.1.33 Pro-only feature: Push_Settings v v v v v v v v it et 31

4.2 Local-only UDP API it et e e e e e e e e e e e e 32
4.3 HTTPoutputinfohandler 32
4.3.1 JSON format stream information 32
4.3.2 JavaScript format stream information, 33
4.3.3 JavaScript stream embeddingo oo 33
4.3.4 HTML stream embedding 33

4.4 Pro-only feature: Triggers« v v it e e e e 34
4.4.1 SYSTEM.START o e e e e e s e e e e 34
4.4.2 SYSTEM_STOP e e e e e e 34
4.4.3 OUTPUT.START e e e e e e e e 35
4.4.4 OUTPUTSTOP it e e e e e e e e e 35
4.45 STREAMADD i ittt e e e e e e e e e e e e 35
4.4.6 STREAM_CONFIG e e e e i e e e 35
4.47 STREAMREMOVE et e et e et e e 35
4.4.8 STREAM SOURCE ittt i et e e e e 36
4.49 STREAMLOAD o ittt e e e e e e e e e 36
4.4.10 STREAM READY ittt e 36
4.4.11 STREAM UNLOAD it e e e e e e e e e e e e 36
4.4.12 STREAM PUSH e e e s e 36
4.4.13 STREAM.TRACKADD i et e e e 37
4.4.14 STREAM.TRACKADD ittt e 37
4.4.15 STREAM BUFFER ittt ettt e 37
4.4.16 RTMP PUSH REWRITE it 38
4.4.17 PUSH.OUT.START ot e e e e e e e e 38
4.418 CONN_OPEN i i ittt et e e e e e e e e e e e e 38
4.419 CONNCLOSE« ittt e e e e e e e e e e e e 39
4.420 CONNPLAY oo e e e e e e e e 39
4.4.21 USERINEW e e e e 39
4.4.22 RECORDING.END et e e e e e 40
4423 LIVE BANDWIDTH e e et e e e 40

4.5 Pro-only feature: Prometheus instrumentation oo o .. 40
May 17, 2017 Page 3 of 42

Phone: +1 408 677 5212

MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com
5 Specifications 41
5.1 Videosupport matrixX i i e e e e e e e e e e e e e 41
5.2 Audio SUPPOTt MALTIX v v v v v v e 41
5.3 Feature support matriXo i i e e e e e e e e e 42

May 17, 2017 Page 4 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

1 Installing MistServer

1.1 List of files and their purpose

MistServer consists of multiple binaries, all working together to form the software as a whole. Each
binary is dedicated to a specific task:

e MistController
This is the main binary, and the only mandatory one. It’s functions include responding to API
requests, discovering the other binaries, keeping track of statistics, logging, and starting and
monitoring the various other binaries. It is the “brain” of MistServer, so to speak.

e MistiIn—
These provide stream input capabilities, and their task is to act as the “source” of streams.
Some of them read from files on the filesystem, others accept data through standard input
or read data from a specific protocol connection. The specifics of each input are covered
elsewhere in this manual.

e MistInBuffer
This is a special input: it expects live data to come in from some other location and maintains
a buffer of the data, with metadata that is kept up-to-date. Pro-only feature: MistInBuffer also
performs “mixing” functions, allowing you to combine multiple separate live sources into a single
stream.

e MistOut—
These provide stream output capabilities, and their task is to communicate with the outside
world. This can mean maintaining an open listening socket, or automated activation through
another MistServer component. Additionally, some outputs are capable of writing to files and
standard output.

e MistAnalyser—
These are not part of MistServer itself, and are not needed for the software to operate. They
are utilities meant to assist in development and/or debugging and can provide information
about media streams of varying types. They share a common usage syntax and most of them
can handle both stream and file input. Most users will not need to touch these under normal
conditions, but they can be very useful to developers.

o MistUtil—
These are not part of MistServer itself, and are not needed for the software to operate. They
are utilities that operate on other types of data than media data. Most users will not need to
touch these under normal conditions, but they can be very useful to developers.

It is safe to remove binaries that you do not plan on using, which will simply disable their
related functionality in MistServer. Similarly, it is possible to write your own outputs and inputs to
supplement MistServer’s capabilities. For more information about this, please contact one of our
engineers as it is outside of the scope of this document.

Besides the binaries, there is one more file: the configuration file. This file is a JSON-formatted
plain text file, containing the complete setup of your MistServer installation. This file is loaded
when MistServer starts, and written as MistServer exits. You can also force a manual write of the
configuration through the API or the configuration interface. Its location can be controlled through a
command line parameter, but its default location is config. json in the current working directory
of MistServer. When running MistServer as a system service, we recommend using the location
/etc/mistserver.conf instead.

May 17, 2017 Page 5 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

1.2 Running without installation

MistServer can be started without installing it, simply by extracting all its binaries to a single folder
and executing the MistController. It will by default store its configuration in the current working
directory.

It will walk you through a first-time setup on the command line, and then start listening for
requests as well as make available the API port and configuration interface. Many choose to run
MistServer in a screen session during testing or if they do not have root access to the machine
MistServer needs to run on.

Do note that some of MistServer’s automatic error recovery features will not function properly
when not running as a system service.

1.3 Automatic installation

To ease initial installation, we provide an automated installer script. This is the recommended
method of installation for novice to intermediate system admins. Expert users may prefer a manual
installation instead (see below).

This installer script will autodetect whether your server is running an init or systemd based distro,
and install MistServer using the recommended default settings:

e Binaries in /usr/bin/
e MistServer running as an auto-starting system service
e Settings stored at /etc/mistserver.conf

The command line to paste into your server’s terminal can be found in “My Downloads” on our
website, and will look similar to this:
curl -o - http://releases.mistserver.org/is/12/1234567890abcdef1234567890abcdef/mist.tar.gz
— 2>/dev/null | sh
After running this command, you can complete the setup by logging in to the web interface on
port 4242 through your browser and following the instructions that appear.

1.4 Manual installation

You can download and unpack MistServer to /usr/bin using the following command:

curl $URL -o - | tar -xz -C /usr/bin #Where URL is the URL of your download link.

MistServer is now installed, but is not yet configured as a system service and thus will not run
automatically on system boot.

MistServer has both initd and systemd service files available for this purpose. We recommend
using systemd, as it hasmore advanced monitoring and error recovery capabilities, but the initd
script is also available for systems where systemd is not yet available.

To install MistServer as a systemd service, download and install our systemd service file, then
enable it (autoboot) and start it (run now):
curl http://mistserver.org/mistserver.service -o /etc/systemd/system/mistserver.service

systemctl enable mistserver.service
systemctl start mistserver.service

To install MistServer as an initd service, download and install our initd script instead, then start
it (run now):

curl http://mistserver.org/mistserver.init -o /etc/init.d/mistserver

chmod +x /etc/init.d/mistserver

service mistserver start

Also use the usual methods for your distribution to enable autoboot (this is distribution-specific,
— please refer to your distribution's documentation for more details).

May 17, 2017 Page 6 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

1.5 First time set-up

The first time you run MistServer it will need some initial setup.

If running from an interactive terminal, an interactive first time set-up prompt will appear and
walk you through this.

If not running from an interactive terminal, the first time set-up can instead be performed by
pointing your browser at port 4242 of the host running MistServer. A web-based version of the first
time set-up will then appear to perform the same task.

2 Web configuration interface

All configuration of MistServer is done through API calls. The controller contains a built-in web
interface that translates these API calls to an user friendly configuration and monitoring interface.
This section explains what the various panels in the web interface do and how to use them.

In addition to this manual, the web interface also contains integrated hints and helper texts that
explain all the various fields and options in full detail. Please refer to the integrated messages if they
disagree with this manual, as those are generated by the software itself.

2.1 The “Overview” panel

This panel gives a summary of the server status and sets global settings.

The “human readable name” setting is for naming your servers to more easily keep track of them
— this name is never used in any of the internal functions.

By default MistServer will not persist configuration changes to disk until it is shut down. This is a
reliability feature: if any changes are made that cause the system to malfunction, these changes will
not have been written to disk and thus the server will auto-recover to the last known working state.
To force the current configuration to be written to disk without shutting it down, check the “force
configuration save” checkbox and click the “save” button underneath.

2.1.1 Pro-only feature: Version check

The version check allows you to check if you have the latest version of MistServer and do a rolling
update to the newest version available. These rolling updates provide as little interruption to your
services as possible, and in most cases will not disconnect anyone from the server in the process.
The rolling update updates the currently running MistServer installation by first replacing all the
binaries, then restarting any updated outputs with listening sockets. This will not break existing
connections (they will remain on the old version). New connections will be handled by the updated
version, but there is a window of up to five seconds during which new connections cannot be
accepted because the listening socket is temporarily closed. After this the controller itself will reload
to the new version if needed. Such a reload can be triggered manually by sending a USR1 signal to it.

2.2 The “Protocols” panel

This panel controls the available “outputs” of MistServer. All protocols enabled here will be available
for all configured streams (see the next section for more on configuring streams).

By default, all protocols that do not require any settings are enabled.

If you upgraded an open-source edition to a Pro edition, you will have to enable all the extra protocols
that the Pro edition offers. This can easily be done through the “enable default protocols” button on this
page.

You can add a new protocol by clicking the “new protocol” button on the top right, and picking
one from the drop down list that shows up. Each protocol has its own optional and required

May 17, 2017 Page 7 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

configuration parameters that are explained on the page itself. A particularly useful option that is
present for all protocols is the “debug” option which allows you to set the debug verbosity level. The
default is 3, which will print all production-level messages. Lowering the level to 1 or 2 can be useful
for very busy servers, or raising the level to 4, 5 or 6 can be very useful when trying to find out why
a particular protocol has issues. The debug level can also be set globally on the overview panel.

2.3 The “Streams” panel

This panel shows all configured streams, both live and pre-recorded (Video on Demand). It shows
vitals such as current viewer count and stream status, but also contains preview buttons to directly
check the streams from your browser. This is also where you can create or edit streams.

Each stream has two vital properties that must always be set: the base stream name and the
source.

The stream name is the internal name used for a stream inside MistServer and is the main factor
that controls the URLs under which your streams will be available.

The source is the method or location where this stream receives its source material from: for
live streams this will usually be either another server or configuration that allows pushing a stream
in from another location, for Video on Demand this will usually be an absolute filename or folder
location.

In addition to these two, various source types will have other optional or required parameters
that you can set, which will show up in the interface as soon as they are selected in the “source”
field.

2.3.0.1 The “preview” button This button allows you to access the in-browser stream as the
embed code provides it.

Here you can try out various protocol and player combinations by using the “use player” and
“use source” selection dropdowns. Basic information such as status and debug messages are given at
the “player log”. Stream type and track information is given at “meta information”.

2.3.0.2 The “embed” button This button allows you to generate and display the HTML code to
embed a player onto a website. The embedded player will automatically detect the stream settings
as well as browser/device capabilities and make sure optimal playback is realized.

The “use a different host” can be used to change the host in the embedable url/codes in case the
host used to connect to the web interface can not be used on the target website.

Urls “Stream info json” and “stream info script” both give the same stream meta information
available, but through different formats. “Stream info json” is XHR requestable, “stream info script”
is embedable.

“HTML page” is a link directly to the default embed code, but will also do a little bit of device
detection and can redirect to a direct stream url if that suits the device better.

Embed code Here the embed code that is to be used on the webpage is posted. The contents
will change depending on the set host and embed code options. If no changes have been made the
default embed code settings as shown at “embed code options (optional)” will be used.

Embed code options (optional) Here you can set various options to change the behavior of
the embedable player. Any changes in the settings will directly be applied to the embedable code
above. There’s no auto save of the options so be sure to copy the code once you’ve set the options.
Please mouse over the options for an explanation

May 17, 2017 Page 8 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

Protocol stream urls Here a list of all supported direct stream urls is given. The list is generated
based on the codecs available in the stream and protocols enabled in MistServer

2.3.0.3 Pro-only feature: Wildcard streams Wildcard streams are stream names that have a
plus sign in them. The plus sign is not allowed as part of a base stream name, but allows extending
the base stream name with a “wildcard” section that may contain any character. This wildcard
section can then be used to configure a group of streams with a common shared configuration that
are created and removed automatically as-needed.

There are two base uses for this feature:

For live streams, this allows setting an infinite amount of streams with a single configuration.

For Video on Demand streams, this allows serving an entire folder of files or dynamically
configured assets to be served with a single configuration.

2.4 Pro-only feature: The “Push” panel

This panel allows configuring, controlling and monitoring automated pushes. In MistServer terminol-
ogy, a “push” is a stream being sent to another host or to a file on disk. In other words: recordings
are a special type of push (a push to disk).

There are two types of pushes you can create: a regular push and an automatic push.

A regular push is a one-time only action, that is started and then disappears when the stream
ends or the connection to the target is broken.

An automatic push is remembered, and will activate both immediately upon creation as well
as every time a matching stream becomes active. Additionally, if retries are turned on, automatic
pushes will re-activate every time they are shut off and/or fail until the matching stream becomes
inactive again.

A stream “matches” for push purposes under either of these conditions:

e An exact match (e.g. ‘foo’ matches the stream ‘foo’, ‘foo+bar’ matches the stream ‘foo+bar’,
but neither matches ‘bar+foo’).

e A wildcard match (e.g. foo+’ matches ‘foo+bar’ and ‘foo+baz’ but not simply ‘foo’)

There are two more settings on this screen that can be configured:

The “delay before retry” setting decides how many seconds a failed automatic push will wait
before a retry attempt. If this is set to zero (the default) there will be no retry attempts at all. In
other words, it must be set to at least one to enable the automatic retry feature for pushes.

The “maximum retries” setting decides how many retries per second will happen. This feature
can be used to rate-limit retries to prevent overloading a target and/or the server itself. The default
is zero, which here means “no limit”.

2.5 Pro-only feature: The “triggers” panel

This panel allows adding, changing or removing triggers in the system. Triggers are a way of hooking
into MistServer’s processes, allowing you to make changes to the behaviour. This feature allows
you to build things such as paywalls, region locking, but also feed data into external stream status
indicators and other types of monitoring and control software.

For a full list of all triggers available and their usage, check the section on triggers in this manual.

2.6 The “logs” panel

This panel shows a semi-live auto-updating view of the system logs generated by MistServer. The
most recent logs are shown at the top of the screen. Only approximately 100 lines of logs are kept in
memory, then older entries are thrown away.

May 17, 2017 Page 9 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

When running MistServer as a system service, the full logs can usually be found either in
/var/mistserver.log (when running as an init service) or in the system journal (when running as
a systemd service).

When running MistServer from a console window, the full logs are printed to the console,
colour-coded by their type.

2.7 The “statistics” panel

Here you can view the live statistics kept by MistServer. Statistics data for inactive sessions is only
kept in memory for approximately ten minutes, so any data points older than that will most likely be
inaccurate.

Pro-only feature: When using a Pro edition, it is highly recommended to not use the statistics panel,
but instead the much more modern built-in Pro-only feature: Prometheus instrumentation. See the
section on integration for more details on this.

2.8 The “server stats” panel

This panel shows some of the current vitals of the machine MistServer is running on. Consider this
purely informational and do not rely on its accuracy, particularly on non-x86-Linux systems.

3 Stream settings

A “stream” is the base concept of media in MistServer. All media going in and/or out of MistServer
is a stream. A stream can be live or on-demand, use the Pro wildcard feature or not, have configured
triggers or not, have configured automatic pushes or not, etcetera.

Regardless of whether a stream is configured through the web interface or the API, the method
of configuration and the options available are the same.

All streams have two main settings that are mandatory and must at all times be configured for
the stream to function at all. These are the stream name and stream source settings. In addition
to these, depending on the source value used, more mandatory and/or optional settings may be
available.

“Stop sessions” can be used to completely disconnect any incoming or outgoing connections
involving the stream for a complete reset.

3.1 Stream name

The stream name is the name that is used internally (and, unless overridden through triggers or
other means, by default also externally) to refer to a specific media stream.

A stream name may be no more than 100 single-byte characters long, and only the lower-case
letters A-Z, numbers, and underscores are allowed in the stream name.

Upper case characters will be converted to lower case, but any other characters in a stream name
will be thrown away silently. In other words, setting a stream name to “Test-Stream-1" will result
in the stream name “teststream1” to be used instead. This works both when configuring a stream
and when accessing a stream later, ensuring consistency.

When using wildcards, a plus symbol (+) or single space (either symbol may be used inter-
changeably) separates the stream name from the wildcard specifier. The wildcard specifier itself may
contain any character, as long as the length of the entire string including stream name, separator
and wildcard specifier stays within the limit of 100 bytes. UTE-8 encoding is assumed, but it is safe
to use other encodings. Other encodings will not display correctly, however.

May 17, 2017 Page 10 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

3.2 Stream source

The source of a stream defines literally just that: the source of the media data. It is a simple text
field, and in its simplest form is merely the full path to a file that needs to play, but often it will be a
URI representing a more complex resource.

3.2.1 Push input for live streams

If you plan to push a stream towards the server through RTMP (Pro-only feature: or RTSP), you'll
want to configure the source as:

push://[host] [@passphrase]

Both the source host and the passphrase are optional. An incoming push will have to match at
least one of the two to be allowed push access to the server, as well as the stream name.

Pro-only feature: The passphrase feature is not available in the open source version.

Some examples:

e push:// will allow anyone to push to the given stream name, without any host or password
checking.

e push://127.0.0.1 will allow only localhost to push to the given stream name.

e push://@123abc will allow only users passing on the passphrase “123abc” to push to the given
stream name.

e push://127.0.0.10@123abc will allow localhost without a passphrase, and all other hosts with
the passphrase to push to the given stream name.

Once set up, you can push over the RTMP protocol using the following RTMP URL:

rtmp://hostname:port/passphrase/streamname

The passphrase may be filled with any value (including leaving it empty) if not used. The section
“rtmp://hostname:port/passphrase” is often referred to in RTMP broadcasting software as the
“application URL” while the streamname is usually referred to as either the stream name or the
stream key in RTMP broadcasting software. If port 1935 is used it may be left out.

Pro-only feature: Pushing over RTSP is also possible, using the URL:

rtsp://hostname:port/streamname?pass=passphrase

The same guidelines and behaviour as for RTMP pushing apply. If port 554 is used it may be left
out.

Using a push source means several optional supplemental settings become available:

e Buffer time — As opposed to allowing full seeking from the beginning of the broadcast to the
current live point, MistServer maintains a “buffer” of a set duration within which clients can
seek. The standard duration for this buffer is 50,000 milliseconds (50 seconds), and this value
may be changed on a per-stream basis either to a smaller or larger value. The internal buffer
process will automatically enlarge the actual buffer size to make sure all protocols can reliably
play, which in some cases means it will be enlarged significantly.

e Cut time — Any data before the given time stamp in milliseconds will be removed from the
buffer.

e Debug — The amount of debug information printed to the log

e Resume support — This setting changes the behaviour when an incoming stream stops. With
resume support on the buffer will stay alive for a while. If the source reconnects while the
buffer is alive it may continue. With resume support off the buffer immidiately exits when the
incoming push stops.

May 17, 2017 Page 11 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

e Segment size — The minimum amount of milliseconds stream segments will be for segmented
protocols. The buffer will concatenate whole keyframes until the minimum amount has been
reached.

3.2.1.1 Pro-only feature: Wildcard push input Wildcard push input lets you use the stream
wildcard feature to create new push input live streams using the same settings on the fly. To use this
configure a normal push input live stream as every push input live stream can be used for wildcard
streams.

To create a wildcard stream push towards MistServer like normal, but add “+wildcard specifier”
to the end of the stream name. The “wildcard specifier” can contain any character but the total
length of the full stream name may not exceed 100 bytes.

Created wild card streams will show up on the stream window slightly indented and sorted under
the parent stream.

3.2.2 DTSC pull input

DTSC pull can be used to pull streams over DDVTech’s propriatary DTSC protocol. This is the most
efficient means to pull a stream from another MistServer instance. You'll need to configure the
source as:

dtsc://host[:port] [/streamname [+wildcard]]

Both port and stream name are optional. The port will default to 4200 and the stream name will
default to the local stream name. If the local stream is requested with a wildcard and there is not a
wildcard in the DTSC url it will be appended to it.

Some examples:

e dtsc://1.2.3.4 will pull from ip 1.2.3.4 and requests its own name.

e dtsc://1.2.3.4/video will pull from ip 1.2.3.4 and will pull stream video and all of its
wildcard streams, serving it under the set name with the wildcard names added to it.

e dtsc://1.2.3.4/video+vid_01 will pull from ip 1.2.3.4 and only pull the wildcard stream
vid_01, serving it under the set name

Pro-only feature: In order to pull from a MistServer instance you will need to activate the DTSC
protocol at the “protocol panel”. If activated any stream available on the server is available for DTSC
pull under the selected port. Note that currently, only pulling live streams is thoroughly tested. Video on
Demand support is still considered experimental.

Using a DTSC pull means the same optional supplemental settings become available as for
RTMP/RTSP push input.

3.2.3 Pro-only feature: HLS pull input

HLS pull can be used to pull streams over HLS from any reachable server. You'll need to configure
the source as:

http://streamurl.m3u8

Please make sure that MistServer is able to reach the requested url in order to work.

3.2.4 Pro-only feature: TS UDP input

TS UDP input can be used to have MistServer listen for a stream on the selected host/port over UDP.

Both unicast and Multicast can be used. Since listening for TS UDP input is a continous process

you’ll need to “stop sessions” if you edit the source. You'll need to configure the source as:
tsudp://[host] :port [/interface[,interfacel,...]1]]

May 17, 2017 Page 12 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

Both host and interface are optional. The host will default to all hosts available when not set,
interface will default to all available interfaces when not set. The interface should be given as the IP
address of the interface.

Some examples:

e tsudp://:8765 will listen on all interfaces on port 8765 for an available stream.
e tsudp://1.2.3.4:8765 will listen on 1.2.3.4 port 8765 for an available stream.

e tsudp://224.0.0.0:8765/1.2.3.4 will listen for multicast broadcasts on address 224.0.0.0
on port 8765 through the interface with address 1.2.3.4.

e tsudp://224.0.0.0:8765/1.2.3.4,5.6.7 will listen for multicast broadcasts on address
224.0.0.0 on port 8765 through the interfaces with addresses 1.2.3.4 and 5.6.7.8.

Using a DTSC pull means the same optional supplemental settings become available as for
RTMP/RTSP push input. There is however one unique to TS UDP input:

e Always on If ticked instead of listening once the stream has been requested the stream will
constantly monitor for stream data on the selected source and will make it available if found.
This uses system resources continuously, but prevents the start-up delay the first viewer on a
stream may experience.

3.2.4.1 Multicast Multicast is used by setting up a normal TS UDP input stream while listening
to a multicast address as “host”. Multicast addresses are in the range 224.0.0.0 - 239.255.255.255
for IPv4. IPv6 multicast is also supported on all addresses with the prefix ££00: : /8.

3.2.5 File input

File input can be used to make previously stored media available in MistServer. All you need is
access to the file and have write access in the folder it is stored as an DTSH file will be created for
fast transmuxing, this can delay the very first playback. You can either use the “browse” button or
configure the source as:

Linux/MacOS /path/file

Windows /cygdrive/driveletter/path/file

Some examples:

e /home/mypc/videos/videol.mp4 for Linux/MacOS: will access the file named “videol.mp4”
in the folder /home/mypc/videos.

e /cygdrive/D/videos/videol.mp4 for Windows: will access the file named “videol.mp4” in
the folder “videos” on your D drive.

Unsupported file names will be accepted but are unavailable for playback. If a file isn’t working
while it should be supported please check the “protocol panel” if the protocol is enabled and keep an
eye on MistServer’s logs for possible error messages.

3.2.5.1 Pro-only feature: Folder support Folder support lets you use the stream wildcard feature
to serve all the files in a given folder. To use this, simply configure a stream with as source the full
absolute path to the folder, ending in a forward slash. All files in the given folder will then become
available under the stream name streamname+filename.

For example, the file /storage/random.mp4 would be available as the stream name vod+random.mp4
if the stream vod is configured with source /storage/.

Subfolders are not supported and must be configured as additional streams. This is a security
consideration. For dynamic adding/removing of Video on Demand streams in a more complex folder
structure, please refer to the section on triggers in this manual.

May 17, 2017 Page 13 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

4 Integration

For integration with other systems, MistServer provides several methods:

1. The main method is the API, which allows configuration changes as well as direct control over
various aspects of MistServer while it is running.

2. For easily grabbing data about specific streams, there is the info handler integrated into the
HTTP output.

3. Pro-only feature: The triggers system allows receiving notifications of nearly any event, as well
as changing the behaviour of MistServer.

4. Pro-only feature: The prometheus instrumentation allows gathering live statistics on your
MistServer instance

All of these will be further explained in the following subsections.

4.1 API

All of the configuration of MistServer can be done through its API. The API is based on JSON
messages over HTTP.

A default interface implementing this API as a single HTML page is included in the controller
itself. This default interface will be send for invalid API requests (to any other URL than /api), and
is thus triggered by default when a browser attempts to access the API port directly. The default
API port is 4242 - but this can be changed through both the API itself and through command line
parameters.

To send an API request, simply send a HTTP request to this port for any file, and include either
a GET or POST parameter called “command”, containing a JSON object string as payload. When
requesting /api or /api2, you are guaranteed to receive a JSON object in return; otherwise sending
an invalid request will serve the HTML5 API implementation web interface.

An API call consists of one or more members being sent in the JSON object passed through the
“command” parameter, and combining multiple members into a single call is allowed. The output
will be similarly combined in that case.

You may also include a ”callback” or ”jsonp” HTTP parameter, to trigger JSONP compatibility
mode. JSONP is useful for getting around the cross-domain scripting protection in most modern
browsers. Developers creating non-JavaScript applications will most likely not want or need to use
JSONP mode.

An example of an authorization request to the API looks like this:

GET /api?command={"authorize":{"username":"test","password":"941d7b88b2312d4373aff526cf7b6114"}}
— HTTP/1.0

Or, properly URL encoded:

GET /api?command=7%7B}22authorize’,22%3A%7B%22username22%3A%22test%22%2C}22password%22%3A%2294. . .
— HTTP/1.0

The server is quite lenient about not URL encoding your strings, but it’s a good idea to always
URL encode the entire command parameter to prevent it from being interpreted wrongly.

Each API command available will be explained in the following sections.

For historical reasons, the “streams”, “config” and “log” API responses are always given, even
if not requested, unless the request “"minimal": 1” is sent along with the API requests. When
requesting through /api2, the minimal flag is always set automatically.

Pro versions of MistServer will always include the response “"LTS":1” to indicate that they are

Pro versions.

May 17, 2017 Page 14 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

4.1.1 Authentication

Unless connecting from the same machine that is running MistServer, you will need to authenticate
each connection to the controller at least once. If the connection to the controller is not broken,
repeating the authentication procedure is not mandatory, but allowed at any time.

If the server requires authentication, its response will contain an “authorize” member, itself
containing a “status” member with any other string than “0K”. For example:
{

"authorize":{
"status": "CHALL",
"challenge": "1234567890abcdef"
}
}

When the status is anything other than “0K”, MistServer will only respond to authorization API
calls and nothing else.
Authenticating is done by sending a request of the form:

{
"authorize": {
//Username to login as
"username": "test",
//Hash of password to login with. Send empty value when no challenge for the hash is known yet.
//When the challenge is known, the value to be used here can be calculated as follows:
// MD5(MD5("secret") + challenge)
//Where "secret" is the plaintext password.
"password": ""
3
}

MistServer will always provide an authentication response, regardless of whether one was sent
or not. The response of of the form:
{

"authorize": {
//current login status. Either "OK", "CHALL", "NOACC" or "ACC_MADE".
"status": "CHALL",
//Random value to be used in hashing the password. It contains the challenge parameter to be used
— above.
"challenge": "abcdef1234567890"

}

}

The challenge string is only sent for the status “CHALL”.

A status of “0K” means you are currently logged in and have access to all other API requests.

A status of “CHALL” means you are not logged in, and a challenge has been provided to login
with.

A status of “NOACC” means there are no valid accounts to login with. In this case — and only in
this case — it is possible to create a initial login through the API itself. To do so, send a request as
follows:

{
"authorize": {
//username to create, as plain tezt
"new_username": "test",
//password to set, as plain text
"new_password": "secret"
}
}

Please note that creating accounts like this is not secure at all. Never use this mechanism over a
public network! A status of “ACC_MADE” indicates the account was created successfully and can now
be used to login as normal.

May 17, 2017 Page 15 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

4.1.2 Capabilities

The capabilities call allows collecting data from MistServer on what it is able to do. The response
contains basic system information like the current load, CPU power available, memory available,
and an estimate on the overall speed of the system.

More importantly, the response also contains the list of installed outputs (called connectors
internally, for historical reasons) and inputs, as well as their lists of required and optional parameters
and what codecs they can handle.

To request capabilities to be sent, make a request as follows:

{
"capabilities": true //Any value is accepted - it is ignored.
¥
The response then looks like this:
{

"capabilities": {
"connectors": { // a list of installed connectors. These are the MistOut* ezecutables.
"FLV": { //name of the connector. This is based on the executable filename, with the "MistOut"
— prefiz stripped.
"codecs": [//supported combinations of codecs.

[["H264","H263","VP6"], ["AAC","MP3"]] //one such combination, listing simultaneously
< avatilable tracks and the codec options for those tracks. The special character * may be
— used to indicate any codec.

1,
"deps": "HTTP", //dependencies on other connectors, if any.
"desc": "Enables HTTP protocol progressive streaming.", //human-friendly description of this
— connector
"methods": [//list of supported request methods
{
"handler": "http", //what handler to use for this request method. The "http://" part of a
< URL, without the "://".
"priority": 5, // priority of this request method, higher is better.
"type": "flash/7" //type of request method - usually name of plugin followed by the
— minimal plugin version, or 'HIML5' for pluginless.
}
])
"name": "FLV", //Name of this connector.
"optional": { //optional parameters
"username": { //name of the parameter
"help": "Username to drop privileges to - default if unprovided means do not drop
< privileges", //human-readable help tezt
"name": "Username", //human-readable name of parameter
"option": "--username", //command-line option to use
"type": "str" //type of option - "str" or "num"
}
//above structure repeated for all (optional) parameters
1},
//above structure repeated, as "required"” for required parameters, if any.
"url_match": "/$.£f1v", //String (or array of strings) of URL pattern to match, if any. The £
— substitutes the stream name and may not be the first or last character.
"url_prefix": "/progressive/$/", //String (or array of strings) of URL prefiz to match, if
— any. The £ substitutes the stream name and may not be the first or last character.
"url_rel": "/$.flv", //relative URL where to access a stream through this connector.
"push_urls": ["http://*.flv"] //Optional array of URL patterns that can be pushed out by this
— connector. A connector need not be enabled to be used for push out, being listed in
— capabilities is enough.
}
//... above structure repeated for all installed comnectors.
}9
"inputs": { // a list of installed inputs. These are the MistIn* exzecutables.
"Buffer": { //Name of the input. This is based on the executable filename, with the "MistIn"
— prefiz stripped.

May 17, 2017 Page 16 of 42

Phone: +1 408 677 5212
Phone: +31 10 8080 619
E-mail: info@Qddvtech.com

MistServer V2.11 Manual
May 17, 2017

"codecs": [//supported combinations of codecs
[["*"],["*"],["*"]] //one such combination,
— codec options for those tracks.
— codec.

1,

"desc": "Provides buffered live input", //human-friendly description of this input

"name": "Buffer", //Name of this input

"optional": {}, //optional parameters. Same format as in the "connectors" structure

"required": {}, //required parameters. Same format as the optional parameters.

"priority": 9, //When multiple inputs source_match a source, the highest priority input is

listing simultaneously available tracks and the
The special character * may be used to indicate any

— used.
"source_match": "push://*" //String (or array of strings) that is matched against a source
N

parameter to determine if this input should be used. The * character may appear only
— once, anywhere in the string.

}

//... above structure repeated for all installed inputs.
},
"cpu_use": 500, //Current CPU usage in tenths of percent (i.e. 500 = 50%)
"epu": [//a list of installed CPUs

{
"cores": 4, //amount of cores for this CPU
"mhz": 1645, //speed in MHz for this CPU
"model": "Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz", //model tidentifier, for humans
"threads": 8 //amount of simultaneously executing threads that are supported on this CPU
}
//above structure repeated for all installed CPUs
]’
"load": {
"fifteen": 72,
"five": 81,
"memory": 42,
"one": 124
},
"mem" : {

"cached": 1989, //current memory usage of system caches, in MiB
"free": 2539, //free memory, in MiB

"swapfree": 0, //free swap space, in MiB

"swaptotal": 0, //total swap space, in MiB

"total": 7898, //total memory, in MiB

"used": 3370 //used memory, in MiB (excluding system caches, listed separately)

}’

"speed": 6580, //total speed in MHz of all CPUs cores summed together
"threads": 8 //total count of all threads of all CPUs summed together

4.1.3 Streams

The streams call allows getting and setting the list of configured streams. It only supports overwriting
the entire list at once. For adding or removing streams incrementally, see the “AddStream” and
“DeleteStream” calls.

To change the list of configured streams, request as follows:

{
"streams": {
"streamname_here": { //name of the stream
"source": "/mnt/media/a.dtsc" //stream source

// Any optional and/or required parameters for the input of the given source must be supplied
— here as well

}9
//the above structure repeated for all configured streams
}
}

May 17, 2017 Page 17 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

See the inputs of the Capabilities call for more details on the formats allowed for stream sources and
their optional/required parameters.

Do note that because of the above behaviour, sending an empty streams request will clear all
configured streams!

The server will respond with a full list of all configured streams, as follows:

{
"streams": {
"streamname_here": { //name of the configured stream
"error": "Available", //error state, if any. "Avatlable” is a special value for VoD streams,
— indicating it has no current viewers (is not active), but is available for activation.
"name": "a", //the stream name, guaranteed to be equal to the object name.
"online": 2, //online state. 0 = error, 1 = active, 2 = inactive.
"source": "/mnt/media/a.dtsc" //source for this stream, as configured.
//any optional/required parameters set for the stream, will be present here as well
1,
//the above structure repeated for all configured streams
}
}

4.1.4 AddStream

This call can be used to add or update streams, without modifying other streams. An example call:
{

"addstream": {
"streamname_here": {},//contents idential to streams call
//multiple streams may be added/updated simultaneously

}
}

It’s usage is identical to the Streams call, with the following changes:

e Streams are never deleted when this call is used, only added or updated.
e As such, sending an empty “addstream” request will not delete all streams.

e The resulting “streams” reply from MistServer will not contain all streams, but instead only
updated/new streams. To indicate this, a special stream “"incomplete list":1” is added to
the list of streams.

4.1.5 DeleteStream

This call can be used to remove particular streams, without modifying other streams. It has three
allowed forms, all behaving identically:

// Either..
{
"deletestream": {
"streamname_here": {},//contents ignored
//multiple streams may be deleted simultaneously
}
}
// Or. ..
{
"deletestream": [
"streamname_here",
//multiple streams may be deleted simultaneously
]
¥
// Or. ..
{
"deletestream": "streamname_here"

}

May 17, 2017 Page 18 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619

May 17, 2017 E-mail: info@ddvtech.com

The resulting “streams” reply from MistServer will not contain all streams, but instead only
updated/new streams. To indicate this, a special stream “"incomplete list":1” is added to the list
of streams. If no “AddStream” call is done at the same time as this call, the streams list will thus be
empty.

4.1.6 Config

This call allows changing the core server configuration, including enabled outputs and the API port.
Requests take the following form:

{
"config": {

//AlL of the below members are optional, and will only override their currently set values when

— given.

//To unset a value, set it to null, which will activate the default setting.

"controller": { //controller settings. Any of these may be left out or null to set the default
"interface": "0.0.0.0", //interface to listen on. Defaults to 0.0.0.0 = all interfaces.
"port": 4242, //port to listen on. Defaults to 4242.

"username": "root", //username to drop privileges to. Defaults to root
"debug": 3 // Debug level to run entire server under. Defaults to 3 (production level).
1,
"protocols": [//enabled outputs (named protocols here for historical reasons)
{
"connector": "HTTP" //Name of the output to enable
//any required and/or optional settings may be given here as "name": "value" pairs inside this
— object.
1,
//above structure repeated for all enabled comnectors / protocols

]’

"triggers": { //Pro-only: list of enabled triggers
"SOME_TRIGGER": [

{
"handler": "/some/handler", //handler of trigger
"sync": true, //true if blocking, false otherwise
"streams": ["optional", "stream", "list"l, //List of streams to trigger for
"params": "optional parameters"
1,
//0r. .. (deprecated syntaz)
["handler", nonblocking, ["optional", "stream", "list"]],
//Multiple handlers may be defined, a mizture of the above syntazes is supported
1,
//Multiple triggers may be defined. For details, see manual chapter on triggers!

}’

"serverid": "", //human-readable server identifier

"prometheus": "", //Passphrase for prometheus access. When empty, prometheus access is disabled

— (default).

"accesslog": "LOG" //Where to write the access log. When set to LOG, prints to regular log

— (default).

}
}

Similarly to the Streams call, all enabled outputs must be given at once. To add or remove
outputs incrementally, see the “AddProtocol”, “DeleteProtocol” and “UpdateProtocol” calls. Any/all
changed settings will take immediate effect.

MistServer will respond as follows:

{
"config": {
"controller": {}, //controller settings, same as in request.
"protocols": [//enabled outputs
{

May 17, 2017 Page 19 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

"connector": "HTTP" //Name of the output
//any required and/or optional settings will be included here as well
"online": 1 //0 = offline, 1 = online, 2 = enabled (on demand)

}’

//above structure repeated for all enabled outputs
1,
"triggers": {},//Configured trigger list. Same format as in request
"serverid": "", //human-readable server identifier, as configured.

"iid": "12345678", //Instance ID. Unique ID for this currently running instance, changes every
— restart.

"time": 1398982430, //Current server uniz time.

"version": "2.7/Generic_64", //Currently running server version string.
"prometheus": "", //Passphrase for prometheus access.
"accesslog": "LOG" //Current accesslog storage location.
}
}

4.1.7 AddProtocol

This call can be used to add outputs, without modifying other outputs. It has two calling variants,
each identical in behaviour:

//Either. ..
{
"addprotocol": {
"connector": "HTTP" //Name of the output to enable
//any required and/or optional settings may be given here as "nmame": "value" pairs inside this
< object.

}
}
//0r. ..
{
"addprotocol": [
{
"connector": "HTTP" //Name of the output to enable
//any required and/or optional settings may be given here as "name": "walue" pairs inside this
— object.
}’

//Multiple outputs may be added simultaneously
]
}

It’s usage is identical to the Config call “protocols” property, but outputs are never deleted or
updated when this call is used, only added. A new output will not be added (silently) when it is
already configured identically to the newly added protocol.

4.1.8 DeleteProtocol

This call can be used to remove particular outputs, without modifying other outputs. It has two
allowed forms, behaving identically:

// Either..
{
"deleteprotocol": {
//the ezact configuration of a single output here

}
}
// Or. ..
{
"deleteprotocol": [
{
//the ezact configuration of a single output here
3,

May 17, 2017 Page 20 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

//multiple outputs may be deleted simultaneously
]
}

Only exact matches are deleted. If no exact match is found, the call fails silently. If multiple exact
matches are found, all of them are deleted.

4.1.9 UpdateProtocol

This call can be used to update particular outputs, without modifying other outputs. It is called in
the following form:

// Either..
{
"updateprotocol": [

{
//the ezact configuration of a single output here
}.q
//the newly updated configuration of that same output here
}
}
}

Only exact matches are updated. If no exact match is found, the call fails silently. If multiple exact
matches are found, all of them are updated. Afterwards a de-duplicator is ran over the configured
outputs, deleting any duplicates and preserving only the first identical entry.

4.1.10 Log

These responses provide access to the last 100 lines of MistServer’s log. The only way to request
these is to not set “"'minimal":1”, in which case it is always sent in the response.
The responses look as such:

{
"log": [
[
1398978357, //uniz timestamp of this log message
"CONF", //shortcode indicating the type of log message
"Starting connector: {\"connector\":\"HTTP\"}" //string containing the log message itself
1,
//the above structure repeated up to 99 more times
]
}

4.1.11 Pro-only feature: ClearStatLogs

Sending this request will truncate the log that is sent in Log responses.
It is sent as follows:

{

"clearstatlog": true //contents ignored

}

If a log response is sent by the server at the same time this request is responded to, it contains
the log before truncating took place. There is no other reply to this request.

May 17, 2017 Page 21 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

4.1.12 Browse

These requests can be used to browse the filesystem. Given a path (relative to the working directory
or absolute), it will respond with the full absolute path as well as a list of files and a list of directories
inside it.

Requests look as follows:

{
"path": "/path/here" //If empty, the current working directory is assumed
}
And responses look as follows:
{
"path": {
//The full absolute folder path
"path":"/tmp/example"
//An array of strings showing all files
"files":
["filel.dtsc",
"file2.mp3",
"file3.exe"
]
//An array of strings showing all subdirectories
"subdirectories": [
"folderl"
]
}
}

4.1.13 Save

Normally the controller saves the configuration on clean exit, so that any temporary configuration
changes that were not yet persisted to the configuration file are rolled back in the event of a
malfunction.

This API request forces an instantaneous safe of the configuration to disk, persisting any changes
made without needing to shut down the controller to do so.

The requests looks as follows:

{
"save": true //value is ignored

}

There is no response.

4.1.14 Ul Settings

This request and response can be used to store arbitrary JSON data into MistServer’s configuration
file. It is intended as a persistent storage for interfaces to safe server-wide settings in. The server
itself will ignore any and all data stored using this method.

Requests look as such:

// To store arbitrary data:

{

"ui_settings": {

//data to store here. Must be an object.

}
}
//To retrieve without altering:
{

"ui_settings": true / any non-object value will work for retrieving
}

May 17, 2017 Page 22 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

The response is always:

{
"ui_settings": {
//Previously stored data here
}
}

4.1.15 Clients

Clients requests allow you to retrieve a list of clients connected at a point in time, and their details.
The request looks like this:

{
"clients": {
//array of streamnames to accumulate. Empty (or left out) means all.
"streams": ["streama", "streamb", "streamc"],
//array of protocols to accumulate. Empty (or left out) means all.
"protocols": ["HLS", "HSS"],
//list of requested data fields. Empty (or left out) means all.
"fields": ["host", "stream", "protocol", "conntime", "position", "down", "up", "downbps",
— "upbps"],
//uniz timestamp of measuring moment. Negative means X seconds ago. Empty (or left out) means now.
"time": 1234567
}
}
//0r, when requesting multiple clients responses simultaneously:
{
"clients": [
{},//request object as above
{}//repeat the structure as many times as wanted
]
}

Since MistServer collects data continuously and requests might be segmented or sporadic, for most
accurate results requestdata slightly in the past (e.g. 20-30 seconds in the past). The more current
the data is, the higher the chance that data is incomplete.

The calls are responded to as follows:

{
"clients": {
//uniz timestamp of data. Always present, always absolute.
"time": 1234567,
//array of actually represented data fields.
"fields": [...]
//for all clients, the data in the same order as the "fields" field.
"data": [[x, y, z], [x, y, z], [x, y, zl]
}
}

In case of the second method, the response is an array of responses like this, in the same order as
the requests.
The fields represent:

e host: IP address of connected user

e stream: Stream name user is connected to

protocol: Protocol user is using to connect

conntime: Amount of seconds connection has been active

position: Current playback position in seconds user is at in the stream

May 17, 2017 Page 23 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619

May 17, 2017 E-mail: info@ddvtech.com

e down: Total bytes transferred down

up: Total bytes transferred up

downbps: Current bytes per second down

upbps: Current bytes per second up

4.1.16 Totals

Totals requests are analogous to Clients requests over a period of time, and give you the sum of
clients active in that period and/or the total average bytes per second transferred in that period, for
as many points along the period as possible/feasible.

The request looks like this:

{
"totals": {
//array of stream names to accumulate. Empty (or left out) means all.
"streams": ["streama", "streamb", "streamc"],
//array of protocols to accumulate. Empty (or left out) means all.
"protocols": ["HLS", "HSS"I],
//list of requested data fields. Empty (or left out) means all.
"fields": ["clients", "downbps", "upbps"],
//uniz timestamp of data start. Negative means X seconds ago. Empty (or left out) means earliest
— available.
"start": 1234567
//uniz timestamp of data end. Negative means X seconds ago. Empty (or left out) means latest
« available (usually 'now').
"end": 1234567
}
}
//0r, when requesting multiple clients responses simultaneously:
{
"totals": [
{},//request object as above
{}//repeat the structure as many times as wanted
]
}
The calls are responded to as follows:
{
"totals": {
//uniz timestamp of start of data. Always present, always absolute.
"start": 1234567,
//uniz timestamp of end of data. Always present, always absolute.
"end": 1234567,
//array of actually represented data fields.
"fields": [...]
// Time between datapoints. Here: 10 points with each 5 seconds afterwards, followed by 10 points
— with each 1 second afterwards.
"interval": [[10, 5], [10, 1]],
//the data for the times as mentioned in the "interval” field, in the order they appear in the
— "fields" field.
"data": [[x, y, z], [x, y, 2], [x, y, 2]]
}
}

In case of the second method, the response is an array of responses like this, in the same order as
the requests.

May 17, 2017 Page 24 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

4.1.17 Active_Streams

This requests a list of streams that are currently active, and only those. The list includes any wildcard
versions of streams as well as temporary streams that may be active.
It has two forms:

//Either. ..
{
"active_streams": true //Any non-array value will work, value is ignored.
}
//0r. ..
{
"active_streams": [
//Array of string values of stream properties that are to be retrieved. Possible options are:
"clients", //Current count of connected clients
"lastms" //Current timestamp in milliseconds of a live stream. Always zero for VoD streams.
]
}

The form of the response depends on the request form used.

//First form:

{
"active_streams": ["streaml", "stream2", "stream3", ...]
}
//Second form:
{
"active_streams": {
"streaml": [1,0], //the stream properties requested, in the same order as requested.
"stream2": [365,0], //the stream properties requested, in the same order as requested.
"stream3": [26,0] //the stream properties requested, in the same order as requested.
//Etcetera
}
}

4.1.18 Stats_Streams

This requests a list of streams that currently have statistics, and only those. The list includes any
wildcard versions of streams as well as temporary streams that may have been. Since the stats
window is roughly ten minutes large, this usually includes all streams active in the past approximately
ten minutes.

It has two forms:

//Either. ..
{
"stats_streams": true //Any non-array value will work, value is ignored.
}
//0r. ..
{
"stats_streams": [
//Array of string values of stream properties that are to be retrieved. Possible options are:
"clients", //Current count of connected clients
"lastms" //Current timestamp in milliseconds of a live stream. Always zero for VoD streams.
]
}

The form of the response depends on the request form used.

//First form:
{
"stats_streams": ["streaml", "stream2", "stream3", ...]
}
//Second form:
{

May 17, 2017 Page 25 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

"stats_streams": {

"streami": [1,0], //the stream properties requested, in the same order as requested.
"stream2": [365,0], //the stream properties requested, in the same order as requested.
"stream3": [26,0] //the stream properties requested, in the same order as requested.
//Etcetera

}
}

4.1.19 Pro-only feature: Update

These requests can be used to ask MistServer if it is aware of any updates being available.

requests look as such:

The

{
"update": true //value %is ignored
}
And responses are as follows:
{
"update": {
"error": "Something went wrong", // Any errors, if they occurred. Optional
"release": "LTS64_99", //The current release name, both before and after update
"version": "1.2 / 6.0.0", //The werstion string of the latest avatlable version.
"date": "January b5th, 2014", //Date that the latest available version became avatilable.
"uptodate": 0, //0 if an update is available, 1 if already up to date
"needs_update": ["MistBuffer", "MistController"], //List of binaries that have updated.
— Controller is guaranteed to be last if @1t 1s present in the list.
"progress": 1, //Percentage of currently active update progress. Only present when an update is in
— progress.
"MistController": "abcdef1234567890", //md5 sum of latest version of this binary
//... all other MD5 sums of binaries follow
}
}

Note that this call only returns cached data, and may be out of date. It refreshes roughly once

per hour, as well as directly after each rolling update/reboot.

4.1.20 Pro-only feature: CheckUpdate (deprecated)

Identical to the “Pro-only feature: Update” request.

In the past, this call updated the internal cache of update data. This now happens automatically
and this request has been deprecated as a result. It now behaves identical to the “Pro-only feature:

Update” request.

4.1.21 Pro-only feature: AutoUpdate

Sending this request, as follows:
{

"autoupdate": true //value is ignored

}

Will trigger a rolling update to the latest version, if an update is available. Does nothing if no

updates are available.

This request will send the same response as the “Pro-only feature: Update” request, and cause
“progress” to be set to a non-zero value until the update is either complete or has been cancelled

due to errors.

It is not possible to abort a currently running update through the API. The only way to abort
a running update is to send a kill/interrupt signal to the controller, which will then abort at the
earliest safe time to do so (which may be mid-update, but will never result in a broken system).

May 17, 2017 Page 26 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

4.1.22 Pro-only feature: Invalidate_Sessions

Sending this request will invalidate all the currently active sessions that match. This has the
effect of re-triggering the USER_NEW trigger, allowing you to selectively close some of the existing
connections after they have been previously allowed.
If the USER_NEW trigger is not used, this API call is still executed but will have no noticeable
effect.
It has two variants, which behave identically, and can be called as follows:
//Etther. ..
{
"invalidate_sessions": "streamname" //name of stream to invalidate sessions for
}
//0r. ..
{
"invalidate_sessions": [
"streamname", //name of stream to invalidate sessions for
//multiple streams may be specified simultaneously

]
}

There is no response to this request, and the effect is immediate.

4.1.23 Pro-only feature: Stop_Sessions

This call will disconnect sessions matching either stream name or protocol requirements.

A disconnected session will kill any currently open connections, and, if the USER_ NEW trigger is
in use, prevent new connections from opening for at least ten seconds.

Stream names and protocols are all case-sensitive.

There are two special protocols: “INPUT” and “OUTPUT”. The input protocol identifies all sessions
currently used as a stream source, while the output protocol identifies all sessions currently used as
a console-based output or as an output that is being pulled from elsewhere.

This call has several forms, and is requested as follows:

//Either. ..
{

"stop_sessions": "streamname" //All sessions for the given stream are stopped

}
//0r. ..
{
"stop_sessions": [
"streamname", //All sessions for the given stream are stopped
//Multiple streams may be stopped simultaneously

]

}
//0r. ..
{
"stop_sessions": {
"streamname": "protocol", //All sesstions for the given stream and protocol combination are
— stopped
//Multiple stream+protocol combinations may be given.
//An empty streamname will stop all sessions matching only the protocol:
"": "protocol"
}
}

There is no response to this call.

4.1.24 Pro-only feature: Stop_SessID

This call will disconnect sessions with matching session ID. The session ID can be retrieved using the
USER_NEW trigger, where it is part of the payload.

May 17, 2017 Page 27 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

A disconnected session will kill any currently open connections, and, if the USER_NEW trigger is
in use, prevent new connections from opening for at least ten seconds.
This call has several forms, and is requested as follows:

//Either. ..
{
"stop_sessid": "session ID here" //Given session is stopped
}
//0r. ..
{
"stop_sessid": [
"session ID here", //Given session is stopped
//Multiple sessions may be stopped simultaneously

]
}

There is no response to this call.

4.1.25 Pro-only feature: Stop_Tag

This call will disconnect sessions with the given tag.

A disconnected session will kill any currently open connections, and, if the USER_NEW trigger is
in use, prevent new connections from opening for at least ten seconds.

This call has several forms, and is requested as follows:

//Either. ..
{
"stop_tag": "tag here" //All sessions with the given tag are stopped
}
//0r. ..
{
"stop_tag": [
"tag here", //All sessions with the given tag are stopped
//Multiple tags may be stopped simultaneously
]
}

There is no response to this call.

4.1.26 Pro-only feature: Tag _SessID

This call will tag sessions matching the session ID with the given tag. The session ID can be retrieved
using the USER_NEW trigger, where it is part of the payload.
This call is requested as follows:

{
"tag_sessid": {
"session ID here": "tag here", //Given session ID is tagged
//Multiple sesstions may be tagged simultaneously.
3
}

There is no response to this call. If the given session was not found in the session cache, a warning
message is sent to the log saying as much.

4.1.27 Pro-only feature: Push Start

This call will instantly start a new push of “STREAMNAME” to the given “URI”.

The possible values for “URI” can be gathered from the capabilities of the output protocols, and
is in the “push_urls” field, which may be either a string or array of strings. It is also possible to use
various variables inside the URI, which will be substituted as follows:

May 17, 2017 Page 28 of 42

MistServer V2.11 Manual
May 17, 2017

Phone: +1 408 677 5212
Phone: +31 10 8080 619
E-mail: info@Qddvtech.com

$stream — The full stream name, including wildcard, if any.
$day — The current day of the month (range 01 to 31).
$month — The current month (range 01 to 12).

$year — The current year (numerical, 4 digits).

$hour — The current hour (range 00 to 23).

$minute — The current minute (range 00 to 59).

$second — The current second (range 00 to 60).

$datetime — Shorthand for: $year.$month.$day.$hour.$minute.$second

The “STREAMNAME” may take any of three forms, representing a full stream name, a partial

wildcard stream name, or a full wildcard streamname:

e foo — Only the stream named “foo”, without a wildcard.

o foo+ — All streams named “foo” that have a wildcard behind them, but not without wildcard.

e foo+bar — Only the stream named “foo” with a wildcard value of “bar”.

It is requested as follows:

//Either. ..
{
"push_start":{
"stream": "STREAMNAME",
"target": "URI",
}
}
//0r. ..
{
"push_start": ["STREAMNAME", "URI"]
}

There is no response to this call.

4.1.28 Pro-only feature: Push List

This requests a list of currently active pushes.

The request looks like this:

{
"push_list": true //value %is ignored

}

And is responded to as follows:

{
"push_list": [
[ID, "STREAMNAME", "URI", "URI"],
//Etcetera
]
}

May 17, 2017

Page 29 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

i

The ID is a unique per-push identifier that can be used to stop the given push (see “push_stop’
below), the stream name and first URI are the values from the original call. The second URI is after
handling any triggers and/or variable substitution, which may be identical to the first if neither was
applicable.

If an entry is missing, it is no longer running/functional. Thus, all entries are currently active.

If this call is done simultaneously with a start push call, it may not yet contain the push as starting
a push takes a moment. The same goes for stop push calls.

Refreshing a few times afterwards to make sure the push started (or stopped) correctly is
advisable.

4.1.29 Pro-only feature: Push_Stop

When this call is used, The given IDs from the “push_list” call response (see above) will be stopped.
It has two forms, which are as follows:
//Either. ..
{
"push_stop": ID
}
//0r. ..
{

"push_stop":[ID, ID, ID, ...l //multiple IDs may be stopped simultaneously
}

There is no response to this call.

4.1.30 Pro-only feature: Push_Auto_Add

This call is similar in workings to the “Pro-only feature: Push_Start” call (see that call for details),
with the following changes:

Pushes are only started for currently active (active meaning they have at least one sessions
attached to them of any type) streams matching the request, and only if no matching push is already
active. As such, duplicate pushes will not be created by this call.

Any matching streams that become active in the future, will upon activation also start a push as
requested here, until the automatic push is removed again (using the “push_auto_remove” call, see
below).

If a push stops while the stream is still active, it will only be restarted if the current “Pro-only
feature: Push_Settings” behaviour dictates such (by default, it will not be).

It is requested as follows:

//Either. ..
{

"push_auto_add":{
"stream": "STREAMNAME",
"target": "URI",

}

}
//0r. ..
{
"push_auto_add": ["STREAMNAME", "URI"]
}

There is no response to this call.

4.1.31 Pro-only feature: Push Auto_Remove

This call will stop automatic pushing of matching stream/target combinations. It does not cancel
currently active pushes, however. The “push_stop” call can be used for that.
It has four forms, and is called as follows:

May 17, 2017 Page 30 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

//Either. ..

{
"push_auto_remove":{EXACT ENTRY AS USED IN PUSH_AUTO_ADD}

}

//0r. ..

{
"push_auto_remove": [{EXACT ENTRY AS IN PUSH_AUTO_ADD}, {}, {}, ...] //Multiple entries may be
— removed stimultaneously

}

//0r. ..

{
"push_auto_remove":"STREAMNAME" //Removes all entries for the given stream name.

}

//0r. ..

{
"push_auto_remove": ["STREAMNAME", "STREAMNAME", "STREAMNAME", ...] //All entries for multiple
— stream names may be removed at once.

}

There is no response to this call.

4.1.32 Pro-only feature: Push_Auto_List

This call returns a list of currently active automatic push entries (which can be used in “push_auto_remove”
calls).
It is called as such:

{

"push_auto_list": true //value is ignored
}

And is responded to as follows:

{

"push_auto_list": [

["STREAMNAME", "URI"],
//Etcetera

]

¥

4.1.33 Pro-only feature: Push_Settings

This request allows both retrieving and setting the configuration of automatic pushes.
There are currently two settings that can be changed:

e wait — The amount of time in seconds to wait before restarting a push that stopped or failed,
while the corresponding stream is active. If set to zero, a restart is never performed. Default:
0.

e maxspeed — The maximum amount of automatic pushes restarted per second. If set to zero,
there is no limit. Default: 0.

The request looks like this:

{
"push_settings":{
"wait": 0, //Setting for the watit option. May be left out to not change it.
"maxspeed": 0 //Setting for the mazspeed option. May be left out to mot change tt.
//Note: sending an empty object is a forward-compatible way to rTequest the current settings
— without changing them.
}
}

May 17, 2017 Page 31 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

The response contains the current settings (after applying any changes made through the request):

{
"push_settings":{
"wait": 0, //Current setting for the wait option.
"maxspeed": O //Current setting for the mazspeed option.
}
}

4.2 Local-only UDP API

In addition to the above HTTP-based API, it is also possible to access the API from the local machine
on UDP port 4242.

All regular API requests are supported, and must be sent to port 4242 over UDP. The payload is
the raw JSON object with the request(s).

The current version does not send any replies, but this may change in the future.

The minimal flag is set automatically for UDP API requests, but since there is no reply this has no
practical effect.

4.3 HTTP output info handler

The controller does not keep detailed information about the streams, but the various outputs can
retrieve this information from the inputs.

In order to get this information elsewhere, the HTTP output supports retrieving this information
in either JSON or JavaScript format.

In addition, the HTTP output also supports two methods of embedding onto websites.

4.3.1 JSON format stream information

To retrieve this format, request the URL /json_STREAMNAME. js from the HTTP output (by default
port 8080).

The returned data will have an application/json mime type and contain a JSON object in the
following format:

{
"type": "vod", //vod or live, depending on stream
"width": 480, //Suggested display width
"height": 360, //Suggested display height
"meta": { //Summary of the stream's internal metadata
"tracks": { //full listing of all media tracks in the stream
"audio_AAC_2ch_22050hz_2": { //unique per-track identifier - do not depend on the formatting of
— this tdentifier, may change in the future
"trackid": 2, //untque track ID within the stream
"type": "audio", //type of track: audio, video, etc
"codec": "AAC", //codec used for this media track
"firstms": 0, //first timestamp present in track, in milliseconds
"lastms": 219985, //last timestamp present in track, in milliseconds
"bps": 642, //average bytes per second for this track
"init": "\u0013\u0088", //codec private data, as rTaw binary string

//The following are only present in audio type tracks
"channels": 2, //channel count

"rate": 22050, //sampling rate in Hz

"size": 16, //sample size in bits

//The following are only present in video type tracks

"fpks": 30000, //frames per kilo-second - e.g. 30000 = 30.00 FPS
"height": 360, //native height of the video

"width": 480 //native width of the video

May 17, 2017 Page 32 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

1,

//411 tracks in the stream will be represented
1,
"vod": 1 //only present if the file is a VoD asset
"live": 1 //only present if the file is a live asset

1,
"source": [//listing of possible playback methods
{
"priority": 9, //quality of the playback method. Higher tis better.
"relurl": "/hls/test/index.m3u8", //relative URL to the media data
"simul_tracks": 2, //amount of simultaneously playable tracks through this method
"total_matches": 2, //total count of playable tracks through this method
"type": "html5/application/vnd.apple.mpegurl", //type of playback method, see explanation below
"url": "http://localhost:8080/hls/test/index.m3u8" //absolute URL to the media data
1,

//Each configured method applicable to this stream will be present,
//ordered by simul_tracks, then total_matches, then priority.
]
}

This format is particularly suited to XHR requests.

The type as used in the source array contains a proprietary typing of each playback method.
The general format is maintype/details, and the only standardized form is the HTMLS variant as
shown above. In this type, the main type is htm15 and the details are the HTML5-compatible mime

type.

4.3.2 JavaScript format stream information

To retrieve this format, request the URL /info STREAMNAME. js from the HTTP output (by default
port 8080).

The returned data will have an application/javascript mime type and contain a JavaScript
code in the following format:

// Generating info code for stream test
if (!'mistvideo){var mistvideo = {};}
mistvideo['test'] = {};//The exact same JSON object as in the JSON-based output will be output here

This format is particularly suited for embedding as a script onto a website.

The mistvideo object is created as an empty object if it does not exist yet, and it is filled with a
single entry with the stream name, containing the same JSON object as used in the JSON format.
This allows for repeated embedding of one or multiple scripts like these without them conflicting
with each other.

4.3.3 JavaScript stream embedding

To retrieve this format, request the URL /embed STREAMNAME. js from the HTTP output (by default
port 8080).
This will produce JavaScript code that is suitable for direct embedding onto a web page. It will
attempt to embed the given stream in-line where the script is called, using all default options.
Note that MistServer’s web configuration interface can generated embed codes that are more
flexible and contain a no-script fallback. It is advisable to use that version instead. This version
remains available for legacy compatibility reasons.

4.3.4 HTML stream embedding

To retrieve this format, request the URL /STREAMNAME . html from the HTTP output (by default port
8080).

May 17, 2017 Page 33 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

This will produce either a simple HTML page containing nothing more than a generated embed
script with no-script fallback, or redirect the browser directly to a suitable stream URL if user-agent
sniffing determines that in-browser display is sub-optimal for the device used.

This link is suitable for direct linking from places that do not allow scripting (such as forums,
e-mail, etcetera), and is the most widely compatible method to play back a stream on any device.

4.4 Pro-only feature: Triggers

MistServer reports certain occurrences as configurable triggers to a URL or executable. Triggers are
the preferred way of responding to server events. Each trigger has a name and a payload, and may
be blocking or non-blocking as well as stream-specific or global.

Triggers may be handled by a URL or an executable. If the handler contains the string ://, a
HTTP URL is assumed (HTTPS is not currently supported for triggers). Otherwise, an executable is
assumed.

If handled as an URL, a POST request is sent to the URL with an extra X-Trigger header containing
the trigger name and the payload as the POST body.

If handled as an executable, the given executable is started with the trigger name as its only
argument, and the payload is piped into the executable over standard input.

Blocking triggers will wait for a response from the URL (as response body) or executable (standard
output), using the response to perform some action. Non-blocking triggers do not wait for a response,
and will ignore any response if received later.

A response to a trigger is considered positive if it starts with any of the following: 1, yes, true,
cont. It is considered negative in all other cases.

Stream-specific triggers can be set to activate for only specific streams, while global triggers
always activate, regardless of any related streams.

As mentioned in the Config API call, triggers are enabled as such:

"SOME_TRIGGER": [
["handler", nonblocking, ["optional", "stream", "list"]],
//Multiple handlers may be defined

]

The "handler" here is the handler URL or executable.

The nonblocking variable is a boolean true or false, where true means non-blocking and false
means blocking.

The ["optional", "stream", "list"] is an optional list of streams for which this trigger
should activate. If the trigger is global or this variable is left out or empty, it always activates.

Triggers no longer activate if the controller has been shut down cleanly, but keep activating if the
controller has been shut down by other means.

A full list of triggers and their properties follows.

4.4.1 SYSTEM_START

This trigger is run when MistServer starts, right after the boot has been completed and right before
the first SYSTEM_CONFIG trigger runs.

This trigger is global and may be set either blocking or non-blocking.

There is no payload associated with this trigger.

If set to blocking, a negative response (see beginning of this chapter) will shut down the server.

4.4.2 SYSTEM_STOP

This trigger is run right before MistServer shuts down for any reason that can be caught (i.e. it is not
ran for crashes or when the kernel dumps the process).
This trigger is global and may be set either blocking or non-blocking.

May 17, 2017 Page 34 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

The payload for this trigger is a single-line string containing the reason for the shutdown.
If set to blocking, a negative response (see beginning of this chapter) will abort the shutdown.

4.4.3 OUTPUT_START

This trigger is ran right after an output listener starts (e.g. HTTP, RTMP, etcetera). It is never ran for
outputs that have no listener (e.g. HLS, DASH, etcetera).

This trigger is global and non-blocking.

The payload for this trigger is a single-line string containing a JSON object with the output’s
configuration.

4.4.4 OUTPUT_STOP

This trigger is ran right after an output listener stops (e.g. HTTP, RTMP, etcetera). It is never ran
for outputs that have no listener (e.g. HLS, DASH, etcetera). It is not ran when MistServer is in the
process of shutting down, only when an output is stopped at run-time.

This trigger is global and non-blocking.

The payload for this trigger is a single-line string containing a JSON object with the output’s
configuration.

4.4.5 STREAM_ADD

This trigger is ran right before a new stream is configured.

This trigger is stream-specific and may be set either blocking or non-blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

stream name
{stream configuration as JSON object}

If set to blocking, a negative response (see beginning of this chapter) will prevent the stream
from being added.

4.4.6 STREAM_CONFIG

This trigger is ran right before an existing stream’s options are changed in the configuration.

This trigger is stream-specific and may be set either blocking or non-blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

stream name
{new stream configuration as JSON object}

If set to blocking, a negative response (see beginning of this chapter) will prevent the stream’s
configuration from being changed, reverting it back to the old configuration.

4.4.7 STREAM_REMOVE

This trigger is ran right before an existing stream is removed from the configuration.

This trigger is stream-specific and may be set either blocking or non-blocking.

The payload for this trigger is a single line containing the stream name.

If set to blocking, a negative response (see beginning of this chapter) will prevent the stream
from being removed.

May 17, 2017 Page 35 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

4.4.8 STREAM_SOURCE

This trigger is ran right before the input for an inactive stream is started. When set to blocking, it
allows overriding the input for the stream.

This trigger is stream-specific and may be set either blocking or non-blocking.

The payload for this trigger is a single line containing the stream name.

If set to blocking, the response is used as if it was configured as source for this stream. Be careful
not to send a newline after the response. An invalid source will prevent the input from starting.
An empty response will use the input as configured.

4.4.9 STREAM_LOAD

This trigger is ran right before the input for an inactive stream is started (and before the STREAM_SOURCE
trigger is ran).

This trigger is stream-specific and may be set either blocking or non-blocking.

The payload for this trigger is a single line containing the stream name.

If set to blocking, a negative response (see beginning of this chapter) will prevent the input from
loading.

4.4.10 STREAM_READY

This trigger is ran right after an input for a stream as finished loading, and has started serving data
to outputs.

This trigger is stream-specific and may be set either blocking or non-blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

stream name
input name

If set to blocking, a negative response (see beginning of this chapter) will shut down the input.

4.4.11 STREAM_UNLOAD

This trigger is ran right before an input for a stream shuts down.

This trigger is stream-specific and may be set either blocking or non-blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

stream name
input name

If set to blocking, a negative response (see beginning of this chapter) will cancel the shut down,
and keep the input running.
4.4.12 STREAM PUSH

This trigger is ran right before an incoming push to a stream is accepted or denied.

This trigger is stream-specific and may be set either blocking or non-blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

May 17, 2017 Page 36 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

stream name

ip address of incoming push

name of protocol used by incoming push
URI of incoming push (if any)

If set to blocking, a negative response (see beginning of this chapter) will deny the push.
Otherwise, it is handled as if the trigger was not active.

4.4.13 STREAM_TRACK_ADD

This trigger is ran right after a new track has been accepted by a live stream buffer.

This trigger is stream-specific and non-blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

stream name
newly accepted track ID

4.4.14 STREAM_TRACK_ADD

This trigger is ran right after a track has been fully purged from a live stream buffer.

This trigger is stream-specific and non-blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

stream name
purged track ID

4.4.15 STREAM_BUFFER

This trigger is ran whenever the live buffer state of a stream changes. It is not ran for VoD streams.
This trigger is stream-specific and non-blocking.
The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

stream name
stream state (one of: FULL, EMPTY, DRY, RECOVER)
{JSON object with stream details, only when state is not EMPTY}

The state is set to FULL when the live stream has become playable in all protocols.

The state is set to EMPTY when the live stream is shutting down (this may happen even if the
stream never reached FULL state).

The state is set to DRY when a new problem has been detected with the incoming media data
(e.g. stutters, frame drops, etcetera). A stream may be DRY and FULL at the same time, in which
case a separate DRY is never sent.

The state is set to RECOVER when a previously DRY stream has recovered and there are no
detected problems any more.

In other words: during the lifetime of a stream buffer, the state usually goes from FULL to EMPTY,
and may alternate between RECOVER and DRY (in any order) in between.

The stream details contain a JSON object in the following format:

{
"video_H264_854x480_25fps_2": { //Unique track identifier
"codec": "H264", //codec of track
"kbits": 159, //current average bit rate in kbit/s

May 17, 2017 Page 37 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

"keys": { //summary of stability of track
"frame_ms_max": 40, //highest milliseconds in a single frame
"frame_ms_min": 40, //lowest milliseconds in a single frame
"frames_max": 250, //highest frame count per key frame
"frames_min": 250, //lowest frame count per key frame
"ms_max": 10000, //highest millisecond duration for a key frame
"ms_min": 10000 //lowest millisecond duration for a key frame

},

//The following are only present for video tracks:

"fpks": 25000, //frames per kilo-second - e.g. 25000 = 25.00 FPS

"height": 480, //height of video data

"width": 854 //width of wvideo data

1,

//Repeated for all tracks

"issues": "unstable connection (6884ms H264 frame)!" //Only present when issues have been detected
— (DRY state), a single string containing a human-readable description of all issues found.

4.4.16 RTMP_PUSH_REWRITE

This trigger is ran right before an incoming RTMP push is accepted or denied (and before the
STREAM_PUSH trigger is ran). It allows rewriting the incoming RTMP URL.

This trigger is global and must be blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

actual RTMP URL
IP address of the incoming push

The response replaces the actual RTMP URL for the remainder of the incoming PUSH handling.
Be careful not to send a newline after the response. A blank response (or if set to non-blocking)
will immediately break the connection of the incoming push. If the response cannot be parsed as an
RTMP URL, the stream name will be set to the response with no further parsing.

Afterwards, the push is handled as if the RTMP URL was originally the newly rewritten URL. This
trigger can be used to implement other security than the IP white listing and password protection
that MistServer offers, such as for example stream keys.

4.4.17 PUSH_OUT_START

This trigger is ran right before an outgoing push is started.

This trigger is stream-specific and must be blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

stream name
push target URI

The response replaces the push target URI. Be careful not to send a newline after the response.
A blank response (or if set to non-blocking) will abort the outgoing push.

This trigger is ran before variable substitution takes place. It still takes place afterwards, so the
same variables as allowed in the “Pro-only feature: Push_Start” API call can be used in the response.

4.4.18 CONN_OPEN

This trigger is ran right after a new incoming connection has been accepted.

This trigger is stream-specific and may be set either blocking or non-blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

May 17, 2017 Page 38 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

stream name

IP address of connected host
output protocol name

request URL (if any)

If set to blocking, a negative response (see beginning of this chapter) will close the connection
without handling it further.

4.4.19 CONN_CLOSE

This trigger is ran right after an incoming connection has been closed.

This trigger is stream-specific and non-blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

stream name

IP address of connected host
output protocol name
request URL (if any)

4.4.20 CONN_PLAY

This trigger is ran right before playback of media data to a connection starts.

This trigger is stream-specific and may be set either blocking or non-blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

stream name

IP address of connected host
output protocol name

request URL (if any)

If set to blocking, a negative response (see beginning of this chapter) will close the connection
without handling it further.

4.4.21 USER_NEW

This trigger is ran once and exactly once for each new session. Sessions are cached for approximately
ten minutes, after which a user is considered new again. The “Pro-only feature: Invalidate_Sessions”
API call may be used to re-run this trigger for a particular stream on request, in which case it will
activate exactly once more for each currently active session.

This trigger is stream-specific and may be set either blocking or non-blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

stream name

IP address of connected host

user-agent checksum or connection ID (for non-HTTP outputs)
output protocol name

request URL (if any)

session ID

If set to blocking, a negative response (see beginning of this chapter) will deny access to this
session until it is no longer cached.
If set to non-blocking, this trigger has no effect.

May 17, 2017 Page 39 of 42

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

4.4.22 RECORDING_END

This trigger is ran whenever an output to file finishes writing, either through the pushing system
(with a file target) or when ran manually. It’s purpose is for handling re-encodes or logging of stored
files, etcetera.

This trigger is stream-specific and non-blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

stream name

path to file that just finished writing

output protocol name

number of bytes written to file

amount of seconds that writing took (NOT duration of stream - though it will usually be near that)

4.4.23 LIVE_.BANDWIDTH

This trigger is ran whenever a live stream exceeds a given bandwidth. The bandwidth must be given
(as bytes per second) in the optional parameter when setting the trigger. The trigger will be re-ran
repeatedly while the stream continues to exceed the given bandwidth, at a rate of 1 execution per
key frame in the stream itself.

This trigger is stream-specific and may be set either blocking or non-blocking.

The payload for this trigger is multiple lines, each separated by a single newline character
(without an ending newline), containing data as such:

stream name
current bytes per second

If set to blocking, a negative response (see beginning of this chapter) will terminate the live
buffer, shutting down the stream.

4.5 Pro-only feature: Prometheus instrumentation

If the controller is started with the -——prometheus PASSPHRASE command line parameter, MistServer
makes Prometheus-compatible instrumentation available.

Once used as a command line parameter, the PASSPHRASE is stored into the configuration file,
and need not be given again over the command line. It can be cleared by using the same parameter
again, and providing an empty string instead: --prometheus "".

The instrumentation can be accessed over the API port (by default 4242) by requesting the
path /PASSPHRASE. Documentation of this instrumentation itself is present inside the output, so not
repeated here.

Alternatively, the same data can also be accessed in JSON format as the path /PASSPHRASE. json.
This format does not contain any documentation, but the same data is used, so please refer to the
Prometheus-style output for details.

Some of the data is stream-bound, and only available while a stream is active (has at least one
session associated with it).

The configuration of Prometheus or some other statistics gathering software is beyond the scope
of this manual. Please see the documentation of your statistics gathering software for further details.
The same goes for visualization of the gathered data.

May 17, 2017 Page 40 of 42

https://prometheus.io/
https://prometheus.io/

Phone: +1 408 677 5212
MistServer V2.11 Manual Phone: +31 10 8080 619
May 17, 2017 E-mail: info@ddvtech.com

5 Specifications

Because MistServer has such a wide range of supported inputs/outputs with various features for
each, the easiest way to represent these is in a set of tables.

In each of these tables a checkmark (v) indicates the feature or codec is supported, a cross mark
(X) indicates the feature or codec is not supported (but support is possible and may be added in the
future), and a dash (-) indicates the feature or codec is technically impossible or not allowed.

5.1 Video support matrix

H264 | HEVC | Flash* | Theora
DASH v v - X
DTSC v v v v
HDS (adobe) v - v -
HLS (apple) v v - o
HSS (silverlight) v - -
FIV v ; v)
MP4 v v X X
RTMP v - v/ -
RTSP v X X X
TS v v X X
0GG X X X v

*The flash codecs are VP6, JPEG, H.263, Screen Video 1/2

5.2 Audio support matrix

AAC | AC3 | MP3 | Flash* | Vorbis | G711a | G711mu
DASH v v v - X - -
DTSC v v v v v v v
HDS (Adobe) v = v v = v v
HLS (apple) v v v - - - -
HSS (silverlight) v X X - - - -
FIV v - v v - v v
MP3 - - v - - - -
MP4 v v v X X - -
RTMP v - v v - v v
RTSP v v v X X v X
TS v v v X X = =
0GG X X X X v X X
WAV - - v - - v X

*The flash codecs are (AD)PCM, Nellymoser and Speex

May 17, 2017 Page 41 of 42

MistServer V2.11 Manual

May 17, 2017

Phone: +1 408 677 5212
Phone: +31 10 8080 619
E-mail: info@Qddvtech.com

5.3 Feature support matrix

Capts in

Capts out

VoD in

VoD play

push in

live play

multitrack in

Store | pullin

push out

DASH
DTSC

HDS (adobe)
HLS (Apple)

HSS (silverlight)

FLV
MP3
MP4
RTMP
RTSP
TS
OGG
WAV

N X X X XN X X X X XN X

XXX XXX X X XXX\ X

L NENE NENE NE

> NN

SSSNSSSSSNSSNSSxS

N X

R L S

ANE NN

SSSNSSSSSNSSNSSNSNS

...\\...\\\.\E

R N

NANENENENE

% ON N X X X X X%

3} 3} M} M X X XN XN X

N X N\

R

AN

May 17, 2017

Page 42 of 42

	Installing MistServer
	List of files and their purpose
	Running without installation
	Automatic installation
	Manual installation
	First time set-up

	Web configuration interface
	The ``Overview'' panel
	Pro-only feature: Version check

	The ``Protocols'' panel
	The ``Streams'' panel
	The ``preview'' button
	The ``embed'' button
	Pro-only feature: Wildcard streams

	Pro-only feature: The ``Push'' panel
	Pro-only feature: The ``triggers'' panel
	The ``logs'' panel
	The ``statistics'' panel
	The ``server stats'' panel

	Stream settings
	Stream name
	Stream source
	Push input for live streams
	Pro-only feature: Wildcard push input

	DTSC pull input
	Pro-only feature: HLS pull input
	Pro-only feature: TS UDP input
	Multicast

	File input
	Pro-only feature: Folder support

	Integration
	API
	Authentication
	Capabilities
	Streams
	AddStream
	DeleteStream
	Config
	AddProtocol
	DeleteProtocol
	UpdateProtocol
	Log
	Pro-only feature: ClearStatLogs
	Browse
	Save
	UI_Settings
	Clients
	Totals
	Active_Streams
	Stats_Streams
	Pro-only feature: Update
	Pro-only feature: CheckUpdate (deprecated)
	Pro-only feature: AutoUpdate
	Pro-only feature: Invalidate_Sessions
	Pro-only feature: Stop_Sessions
	Pro-only feature: Stop_SessID
	Pro-only feature: Stop_Tag
	Pro-only feature: Tag_SessID
	Pro-only feature: Push_Start
	Pro-only feature: Push_List
	Pro-only feature: Push_Stop
	Pro-only feature: Push_Auto_Add
	Pro-only feature: Push_Auto_Remove
	Pro-only feature: Push_Auto_List
	Pro-only feature: Push_Settings

	Local-only UDP API
	HTTP output info handler
	JSON format stream information
	JavaScript format stream information
	JavaScript stream embedding
	HTML stream embedding

	Pro-only feature: Triggers
	SYSTEM_START
	SYSTEM_STOP
	OUTPUT_START
	OUTPUT_STOP
	STREAM_ADD
	STREAM_CONFIG
	STREAM_REMOVE
	STREAM_SOURCE
	STREAM_LOAD
	STREAM_READY
	STREAM_UNLOAD
	STREAM_PUSH
	STREAM_TRACK_ADD
	STREAM_TRACK_ADD
	STREAM_BUFFER
	RTMP_PUSH_REWRITE
	PUSH_OUT_START
	CONN_OPEN
	CONN_CLOSE
	CONN_PLAY
	USER_NEW
	RECORDING_END
	LIVE_BANDWIDTH

	Pro-only feature: Prometheus instrumentation

	Specifications
	Video support matrix
	Audio support matrix
	Feature support matrix

