
DDVTECH MEDIA SERVER PERFORMANCE MEASUREMENT

INITIATIVE UPDATE, 2014 Q2

JARON VIËTOR, CTO, MISTSERVER / DDVTECH B.V.

Abstract. As a follow-up to our first media server performance measurement
initiative release, we have further improved the testing methodology and done

tests on more media server software products.

Our initial tests compared performance among three media servers: Mist-
Server 2.0, Wowza Streaming Engine 4.0.0, and Nginx+RTMP module. This

second release updates both MistServer to version 2.1 and Wowza Streaming

Engine to version 4.0.3. We’ve also added Flussonic 4.2.5 and Adobe Media
Server 5.0.3 to further widen the comparison.

There’s a new test as well, dubbed the “burst test”, which measures be-

haviour in sudden high load situations.
The updates and new results are encouraging and indicate we’re on the

right path.

1. Research question

In the previous performance measurement initiative release, we focussed on the
HTTP server vs media server divide, and wanted to see if MistServer could bridge
that gap.

Now we are updating those results with the latest findings, but have an additional
question. When load balancing multiple servers, often a server will suddenly be
under a lot of load (for example right after starting a new node to handle a surge
of incoming viewers). This first load is often the highest load the server will be
under, but only last a few seconds. We’ll call this kind of load a “burst”.

Our question this time is: how well can media servers handle these bursts?
This is useful information for determining server suitabilty in an automated

load balancing system, as the ability to withstand burst behaviour is critical when
switching many users to a new or different server. If a server fails to handle the
initial burst, it will crash or slow down, often resulting in a domino effect of more
and more powerful bursts throughout the network.

2. Methodology

The methodology has evolved slightly since the Q1 performance tests. Back
in Q1, the metrics had quite a bit of wiggle room between pass and fail, because
the measured servers had trouble living up to a more strict standard. Since then
the average performance of media servers in general has improved greatly, and to
account for this fact the new method is not as forgiving and demands good scores.
For clarity, the entire methodology as it is now, is described in this chapter.

We created a simple tool that runs as a low-footprint system daemon, collecting
generic system performance metrics. These metrics are for the whole system — not

Date: 2014 Q2 - revision 1.

1



DDVTech media server performance measurement initiative, 2014 Q2

just the media server. We opted for this method because there is no reliable way
to collect these metrics for a single server.

The daemon attempts to poll the system usage once per second, but if the system
is really busy the daemon may not be able to poll at this interval and the interval
may become larger. Each interval, the following metrics are collected:

• Time since measurement start, in whole integer seconds (so larger intervals
can be detected and accounted for)

• A one-minute rolling system load average
• Total memory use in bytes, excluding operating system buffers and caches
• The percentage of time since the last interval that the CPU spend in non-

idle states
• Total number of bytes uploaded through all network interfaces since mea-

surement start
• Total number of bytes downloaded through all network interfaces since

measurement start

Additionally, a client process is defined, for the to-be-measured protocol and
stream. This client process is intended to be run from one or multiple separate
hardware machines that should have enough bandwidth and processing power avail-
able to retrieve the stream as many times as will be tested, simultaneously. The
client process simulates a real client connecting to the specified stream over the
specified protocol. It analyses the data coming through and performs corruption
detection checks. If the data stream at any point becomes corrupted, the client
process disconnects and exits without logging anything. Once the stream ends or
the client process is killed, it logs the timestamp of the last media packet received,
system time when the connection started, system time when the connection ended
and the total connected time (calculated difference between start and end system
time). This means the connection is either logged (clean state), or nothing is logged
at all (error state).

Each test follows the following steps, in order:

(1) Enable auto-boot for the to-be-measured media server software
(2) Reboot the to-be-measured hardware
(3) Remotely enable the metric collection daemon
(4) Wait 2 seconds
(5) Start X client processes on one or more systems that are not measured
(6) Wait for Z seconds
(7) Kill all client processes
(8) Wait 10 seconds
(9) Remotely stop the metric collection daemon and collect the stored mea-

surements.

3. Test hardware

We ran our initial tests on a single hardware configuration. It’s specifications
are:

• AMD FX(tm)-8120 Eight-Core Processor
• 2X8GB RAM: Kingston KHX1600C10D3/8GX
• ASRock N68-VS3 FX motherboard
• Eminent EM4028 gigabit ethernet PCI-E adapter
• Western Digital Blue WD5000LPVX, 500GB HDD

The installed operating system is Arch Linux, updated to May 2014. All optional
system services and daemons have been disabled, except for sshd so the system can
be remotely administered.

2



DDVTech media server performance measurement initiative, 2014 Q2

4. The completed measurements

Following the above methodology, we set up a 0.6Mbit RTMP stream, encoded
from the Blender project’s Big Buck Bunny movie. For reference, the exact sample
clip used can be downloaded at the following URL: http://dtsc.mistserver.com/
example1_low.mp4 On each of the configurations described in the introduction, the
following tests were run:

• Run 000: 1 client for 60 seconds (X=1, Z=60)
• Run 001: 1 client for 180 seconds (X=1, Z=180)
• Run 002: 1 client for 600 seconds (X=1, Z=600)
• Run 003: 100 clients for 60 seconds (X=100, Z=60)
• Run 004: 100 clients for 180 seconds (X=100, Z=180)
• Run 005: 100 clients for 600 seconds (X=100, Z=600)
• Run 006: 1000 clients for 60 seconds (X=1000, Z=60)
• Run 007: 1000 clients for 180 seconds (X=1000, Z=180)
• Run 008: 1000 clients for 600 seconds (X=1000, Z=600)
• Run 009: 1200 clients for 60 seconds (X=1200, Z=60)
• Run 010: 1200 clients for 180 seconds (X=1200, Z=180)
• Run 011: 1200 clients for 600 seconds (X=1200, Z=600)
• Burst run: 1000 clients for 5 seconds (X=1000, Z=5)

The raw collected data can be retrieved at this URL: http://releases.ddvtech.
com/raw_data_2014Q2.zip

This archive contains a folder for each media server software, containing all the
test runs in the format “run000 100 rtmp 60.csv”. The first part is the number of
the run, 000 through 011 as listed above. The second part is the total number of
clients. The third part is the protocol tested and the last part is the test dura-
tion in seconds. Another file with the extension .times is available, containing the
measurements taken by the client side, as above.

5. Compared to the previous results

We created graphs out of the raw data collected above, to simplify analysing this
huge amount of data. Let’s go over these and note the more interesting points. All
graphs are included in both PDF and PNG format with the raw data download
mentioned in the previous section. We’ll start with the 10 minute 100-client test:

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

C
P
U

 u
se

CPU usage, 10m, 0.6Mbit stream, 100 rtmp clients

Wowza (100)
Nginx (100)

MistServer (100)
Adobe (100)

Flussonic (100)

3

http://dtsc.mistserver.com/example1_low.mp4
http://dtsc.mistserver.com/example1_low.mp4
http://releases.ddvtech.com/raw_data_2014Q2.zip
http://releases.ddvtech.com/raw_data_2014Q2.zip


DDVTech media server performance measurement initiative, 2014 Q2

Unfortunately, this graph is a little hard to read. To increase readability, here’s
the same graph with a smoothing function applied to the data:

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

C
P
U

 u
se

Smoothed CPU usage, 10m, 0.6Mbit stream, 100 rtmp clients

Wowza (100)
Nginx (100)

MistServer (100)
Adobe (100)

Flussonic (100)

This is the CPU usage for a ten minute test of 100 clients, for all tested appli-
cations. Less is better. The number between parenthesis is the count of
successful clients.

Compared to the Q1 performance tests, quite a bit has changed here: Wowza’s
CPU usage has been significantly decreased by a factor of almost 8, though they
remain the least efficient in terms of CPU usage. MistServer’s average and startup
CPU usage have also gone down, though it’s hard to tell since at 100 clients the
numbers are so small. Nginx has obviously remained the same, as the software
version hasn’t been updated since the last tests.

The performance of the newly added products from Adobe and Flussonic isn’t
very surprising. Flussonic, being erlang-based, was expected to be among the best,
and performs roughly as well as MistServer does. Their non-smoothed graph is
much more spiky, but this isn’t neccesarily a bad thing. Adobe’s performance is
similar to Nginx, though it has more trouble handling the sudden surge of connec-
tions. It quickly stabilizes to roughly the same level Nginx does.

Lets take a look at the memory use for this same test run:

4



DDVTech media server performance measurement initiative, 2014 Q2

0 MiB

200 MiB

400 MiB

600 MiB

800 MiB

1000 MiB

1200 MiB

1400 MiB

1600 MiB

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

M
e
m

o
ry

 u
se

Memory usage, 10m, 0.6Mbit stream, 100 rtmp clients

Wowza (100)
Nginx (100)

MistServer (100)
Adobe (100)

Flussonic (100)

Again, less is better, and the number between parenthesis is the count
of successful clients. In this case, Wowza has not improved but actually is using
roughly 200 MiB more memory than in the Q1 results. The others haven’t changed
much, staying at approximately 300 MiB for 100 clients.

Adobe and Flussonic again show results in line with the rest. Flussonic uses
slightly more memory, but also micromanages its memory usage more, which is
visible from the small spikes in the graph.

Just like in the Q1 tests, MistServer is the only software that frees all memory
used when the 100 clients disconnect.

Lets take a look at the bandwidth usage:

0 Gbit

5 Gbit

10 Gbit

15 Gbit

20 Gbit

25 Gbit

30 Gbit

35 Gbit

40 Gbit

45 Gbit

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

T
o
ta

l 
u
p
lo

a
d
e
d
 d

a
ta

Network upload, 10m, 0.6Mbit stream, 100 rtmp clients

Wowza (100)
Nginx (100)

MistServer (100)
Adobe (100)

Flussonic (100)

Here too, less is better. We also recorded downloaded data, but since uploaded
data accounts for almost all of the data usage in all cases, we only graphed the
uploaded data here.

In the Q1 performance results, Wowza and Nginx didn’t use bandwidth throttling
while MistServer did. Now, Wowza has copied this technique and throttles the

5



DDVTech media server performance measurement initiative, 2014 Q2

bandwidth after an initial non-throttled period. Flussonic uses similar throttling
to MistServer, while Adobe does not throttle at all just like Nginx.

Also noteworthy is that Wowza has fixed their Q1 bandwidth leak, and no longer
sends more data than neccesary.

Time to crank it up a notch and show the graphs for 1000 clients - just a bit
under the hardware limitations of the gigabit ethernet connection. We’ll start with
the smoothed CPU usage again:

0 %

20 %

40 %

60 %

80 %

100 %

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

C
P
U

 u
se

Smoothed CPU usage, 10m, 0.6Mbit stream, 1000 rtmp clients

Wowza (1000)
Nginx (998)

MistServer (999)
Adobe (1000)

Flussonic (499)

Again major improvements for Wowza here - before 800 connections couldn’t
be handled at already, while now it handles all 1000 connections without a hitch.
There’s still high CPU usage spikes through, and the average use is roughly double
what the others use.

Nginx remains the best performer at this load, but MistServer, Adobe and Flus-
sonic are just a few percent away.

Unfortunately Flussonic is the only one not able to handle 1000 incoming RTMP
connections - more on this in a later graph that focusses on this particular point.

Let’s take a look at the memory usage, first:

6



DDVTech media server performance measurement initiative, 2014 Q2

0 MiB

2000 MiB

4000 MiB

6000 MiB

8000 MiB

10000 MiB

12000 MiB

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

M
e
m

o
ry

 u
se

Memory usage, 10m, 0.6Mbit stream, 1000 rtmp clients

Wowza (1000)
Nginx (998)

MistServer (999)
Adobe (1000)

Flussonic (499)

No surprises here, keeping the Q1 results in mind. Wowza still uses roughly
10GiB of memory for 1000 clients, while MistServer and Nginx use roughly 1GiB.
Adobe and Flussonic manage even less, with Adobe taking the memory-efficiency
crown.

We’ll skip the bandwidth usage, since it’s entirely non-surprising. Feel free to
peruse the raw data download mentioned in the previous section, where all graphs
are present.

This brings us to the new buffer time graph. The new testing setup allows us to
measure the amount of buffer time available on the client side, and the buffers look
like this:

-600s

-500s

-400s

-300s

-200s

-100s

0s

B
u
ff

e
r 

si
ze

 (
a
b

o
v
e
 l
in

e
 =

 s
u
cc

e
ss

)

Each point represents a single connection

Available buffer time, 10m, 0.6Mbit stream, 1000 rtmp clients

Wowza (1000)
Nginx (998)

MistServer (999)
Adobe (1000)

Flussonic (499)

All measured software has all connections at 0 seconds buffer time after 10 min-
utes, which is exactly what you’d expect for a 10-minute video.

Except Flussonic, which is missing approximately 10 minutes of data for half the
connections. It seems to have dropped them right at the start, as is clear in the
graph.

So - what happens at the point of 1200 clients, now? Let’s take a look:

7



DDVTech media server performance measurement initiative, 2014 Q2

0 %

20 %

40 %

60 %

80 %

100 %

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

C
P
U

 u
se

Smoothed CPU usage, 10m, 0.6Mbit stream, 1200 rtmp clients

Wowza (151)
Nginx (243)

MistServer (229)
Adobe (312)

Flussonic (319)

0 MiB

2000 MiB

4000 MiB

6000 MiB

8000 MiB

10000 MiB

12000 MiB

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

M
e
m

o
ry

 u
se

Memory usage, 10m, 0.6Mbit stream, 1200 rtmp clients

Wowza (151)
Nginx (243)

MistServer (229)
Adobe (312)

Flussonic (319)

8



DDVTech media server performance measurement initiative, 2014 Q2

0 Gbit

50 Gbit

100 Gbit

150 Gbit

200 Gbit

250 Gbit

300 Gbit

350 Gbit

400 Gbit

450 Gbit

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

T
o
ta

l 
u
p

lo
a
d
e
d
 d

a
ta

Network upload, 10m, 0.6Mbit stream, 1200 rtmp clients

Wowza (151)
Nginx (243)

MistServer (229)
Adobe (312)

Flussonic (319)

These graphs don’t show many surprises. CPU and memory usage are right
where you’d expect them, and the upload graph shows Flussonic still dropping
many users. Lucky for Flussonic, this actually makes them more stable in this
overload situation, and they manage the most successful connections (319), closely
followed by Adobe (312). MistServer (229) and Nginx (243) take the middle and
Wowza (151) performs worst. Let’s bring out the buffer time graph again, and see
how these number visualize:

-600s

-500s

-400s

-300s

-200s

-100s

0s

B
u
ff

e
r 

si
ze

 (
a
b

o
v
e
 l
in

e
 =

 s
u
cc

e
ss

)

Each point represents a single connection

Available buffer time, 10m, 0.6Mbit stream, 1200 rtmp clients

Wowza (151)
Nginx (243)

MistServer (229)
Adobe (312)

Flussonic (319)

It’s hard to tell, but those lines are actually 1200 dots, each. Each dot represents
a single connection, with the best connections on the right and the worst connections
on the left. Ideal would be a straight line at 0s, which is physically impossible in
this test.

Depending on your preferences, you could name several servers winner in this
category:

Flussonic has the highest count of successful connections, but also the highest
count of hard failures (no data received at all). You either get a perfect stream, or
no stream at all.

9



DDVTech media server performance measurement initiative, 2014 Q2

Wowza sends most data to most connections, but has the lowest count of success-
ful connections. Everyone can receive the stream, but almost nobody will receive
it without client-side buffering.

MistServer, Adobe and Nginx all take a middle point, serving some connections
perfectly while most others can still receive the stream but will experience more
buffering.

6. Burst test results

Finally, the new burst test. In this test, the same type of measurement is taken
as above, but we only keep the connection open for 5 seconds. Any connection that
receives at least 5 seconds of media data in those 5 seconds, is deemed successful.

Here’s the buffer time graph for this test at 1000 connections:

-5s

0s

5s

10s

15s

20s

25s

B
u
ff

e
r 

si
ze

 (
a
b
o
v
e
 z

e
ro

 =
 s

u
cc

e
ss

)

Each point represents a single connection

Available buffer time, 5s, 0.6Mbit stream, 1000 rtmp clients

Wowza (343)
Nginx (980)

MistServer (1000)

Adobe (815)
Flussonic (680)

Oddly, MistServer is the only software handling this perfectly with 1000 suc-
cessful connections. Nginx and Adobe follow closely, at 980 and 815 connections
respectively. Next is Flussonic, able to handle 680 connections, and finally Wowza
at 343 connections.

The shape of this graph really tells the whole story. It’s clear that MistServer
assures the connections are treated more or less equally, while Nginx and Wowza
treat them on a first-come-first-serve principle, some of the first connections having
received as much as 20 seconds of buffer time in the first 5 seconds. Flussonic seems
to cap connections at roughly 15 seconds of buffer time, explaining the straight
line on the right side. Adobe most closely follows the behaviour MistServer has,
but prioritizes some connections slightly still, resulting in some others not getting
enough buffer, but not very many.

Let’s take a quick look at the CPU usage of this load too:
10



DDVTech media server performance measurement initiative, 2014 Q2

0 %

20 %

40 %

60 %

80 %

100 %

00:00 00:05 00:10 00:15 00:20 00:25

C
P
U

 u
se

CPU usage, 5s, 0.6Mbit stream, 1000 rtmp clients

Wowza (343)
Nginx (980)

MistServer (1000)

Adobe (815)
Flussonic (680)

A pretty clear picture. Nginx is obviously optimized for this kind of load, which
makes sense as webservers are often hit with exactly this kind of traffic. It picks up
all 1000 connections without as much as a raised eyebrow. MistServer takes second
place, showing a curve at the beginning, but stabilizing quickly. Then Adobe
follows, showing a similar curve but taking longer to stabilize and still showing
effects of the burst long after the connections go away. Flussonic shows the largest
curve, but it does stabilize quickly after. And lastly Wowza, showing a big curve
and taking a long time to stabilize.

7. Analysis

What do all these results mean with regards to our research question?
First let’s talk about the updated tests compared to the Q1 performance data.

There’s a noticable improvement in most areas, particularly in Wowza’s results. It
looks like they read our previous performance report and took it to heart, which
is something we definitely applaud and appreciate. The new Adobe and Flussonic
results definitely help complete the picture of where the current state of the art for
media servers is in terms of performance, giving us a solid baseline set by multiple
media servers written in different programming languages to compare against.

The new burst test results are of course the most interesting part of this paper.
They clearly show that most media servers aren’t designed with this type of load
in mind.

Should they be?
At DDVTech we believe that more and more automation is going to happen,

whether we like it or not. Computers aren’t subtle things, which means this type
of load will become a common thing in the future as systems will be turned on and
off as needed. We do these kinds of tests to see if our solutions220.19 are ready for
the future and to make sure we’re not lacking in any areas we may not have paid
as much attention to. Results like this tell us we’re on the right path, and we’ll
continue to push the envelope in this way.

8. Conclusion

These results are encouraging, but every time we further enhance our perfor-
mance testing methods we find areas we wish we had taken a closer look at.

11



DDVTech media server performance measurement initiative, 2014 Q2

Yes, the data included with this publication is much more complete than last time
around and nearly all major media servers are currently represented, but we’re still
only testing on a single system, using a single OS and measuring a single protocol
(RTMP). Our next publication will focus on these points and widen the scope of
this initiative.

We believe it’s key for media servers to maintain or surpass the performance
standards set by the web servers we all already are familiar with, while adding
domain knowledge about streaming media to perform tasks either better than web
servers can or tasks that web servers are not able to perform at all. This research
initiative is all about striving to meet and exceed this vision for the future.

Anyone with feedback on these results or interested in joining our quest for
accurate and unbiased data is welcome to contact us at info@ddvtech.com — let
us know what you think and what aspects you’d like to see data on!

9. Performance data summery in table form

Table 1. Burst test scores (1000 = perfect)

Wowza Nginx MistServer Adobe Flussonic
343 980 1000 815 680

Table 2. Successful client counts

Clients 1 100 1000 1200
Time 1m 3m 10m 1m 3m 10m 1m 3m 10m 1m 3m 10m
Wowza 1 1 1 100 100 100 433 848 1000 39 284 151
Nginx 1 1 1 100 100 100 896 818 998 562 286 243
MistServer 1 1 1 100 100 100 991 998 999 615 300 229
Adobe 1 1 1 100 100 100 758 621 1000 351 372 312
Flussonic 1 1 1 100 100 100 332 595 499 849 266 319

Table 3. Total bandwidth used per client in KiB

Time 1m 3m 10m
Wowza 10674 21026 51580
Nginx 51569 51563 51587
MistServer 5228 15715 51697
Adobe 53147 52956 53033
Flussonic 6077 17102 51740

Table 4. Idle memory usage in MiB

Wowza Nginx MistServer Adobe Flussonic
710.42 170.40 169.86 182.05 220.19

12



DDVTech media server performance measurement initiative, 2014 Q2

Table 5. Memory usage per client in MiB

Client count Wowza Nginx MistServer Adobe Flussonic
1 91.61 1.03 3.02 80.66 9.13
100 8.57 0.86 1.05 0.91 1.12
1000 8.50 0.77 1.06 0.20 0.35
1200 0.84 0.07 0.10 0.02 0.02
Average 27.63 0.68 1.31 20.45 2.65

Table 6. CPU usage per client in percentage

Client count Wowza Nginx MistServer Adobe Flussonic
1 0.395 0.166 0.346 0.324 0.522
100 0.060 0.010 0.023 0.017 0.036
1000 0.048 0.011 0.020 0.021 0.018
1200 0.054 0.010 0.020 0.015 0.010
Average 0.139 0.049 0.102 0.94 0.146

13


	1. Research question
	2. Methodology
	3. Test hardware
	4. The completed measurements
	5. Compared to the previous results
	6. Burst test results
	7. Analysis
	8. Conclusion
	9. Performance data summery in table form

